MANUEL DE MICROBIOLOGIE
TRAVAUX PRATIQUES - PARTIE GÉNÉRALE
MÉDECINE GÉNÉRALE, SECTION FRANÇAISE

Auteurs: Assis.Univ. Dr. Mihaela-Diana Popa
Axel Balogh de Manko-Bük

Coordonnateur: Prof. Dr. Monica Licker

Editura „Victor Babeș”
Timişoara, 2019
Table des matières

1) Organisation et fonctionnement du laboratoire de microbiologie, les normes de protection du travail ... 5
 1.1) Équipement: ... 5
 1.2) Normes de protection du travail ... 8

2) Stérilisation .. 9
 2.1) La classification des méthodes de stérilisation ... 10
 2.2) La préparation du matériel pour la stérilisation .. 10
 2.3) Le stockage et conservation du matériel stérilisé, après une opération de stérilisation... 14
 2.4) Contrôle de la stérilisation ... 15

3) Antiseptiques et désinfectants .. 18
 3.1) Définitions ... 18
 3.2) Nettoyage ... 19
 3.3) Désinfection .. 19

4) Milieux de culture .. 26
 4.1) Composition des milieux de culture .. 27
 4.2) Classification des milieux de culture .. 28

5) Les principes généraux pour le diagnostic de laboratoire des infections 36

6) La récolte et le transport d’échantillons .. 38

7) L’examen direct des produits pathologiques .. 47
 7.1) L’examen macroscopique ... 47
 7.2) L’examen microscopique .. 48

8) Isolation des germes sur milieu de culture, à partir d’un prélèvement 52
 8.1) Culture à partir d’un produit normalement stérile .. 53
 8.2) Culture à partir d’un produit colonisé par la flore normale 56

9) Les méthodes d’identification des germes .. 58
 9.1) Les méthodes d’identification basées sur les caractéristiques morpho-tinctoriales des frottis colorés à Gram .. 58
 9.2) Les méthodes d’identification basées sur les caractéristiques culturelles 58
 9.3) Les méthodes d’identification basées sur les tests biochimiques et les tests de pathogénicité ... 60
 9.4) Les méthodes d’identification basées sur les tests moléculaires 61

10) L’antibiogramme, technique et interprétation .. 62
 10.1) Techniques d’antibiogrammes ... 63

11.) Réactions antigène-anticorps .. 67
 11.1) Réaction d’agglutination .. 67
 11.2) Réaction avec des anticorps marqués .. 67

12.) Méthodes de diagnostic rapides, en laboratoire de microbiologie 70
 12.1) Méthodes basées sur l’identification des acides nucléiques 70

Bibliographie .. 72
1) Organisation et fonctionnement du laboratoire de microbiologie, les normes de protection du travail.

Établir l'existence de micro-organismes pathogènes ou saprophytes dans les produits pathologiques (l'isolation, l'identification et l'étude de leur biologie) se fait dans des laboratoires de microbiologie.

Selon le domaine d'investigation, il existe des laboratoires de microbiologie avec des profils différents, comme par exemple, les laboratoires de microbiologie médicale, de microbiologie de l'environnement (air, sols, eaux), de microbiologie alimentaire, industrielle, etc.

Le rôle du laboratoire de microbiologie médicale est multiple:

- Dans le diagnostic des infections,
- Dans la chimiothérapie antibiotique la plus appropriée,
- Dans le contrôle de l’efficacité des traitements appliqués,
- Dans le dépistage des porteurs sains.

Le rôle essentiel d’un laboratoire de microbiologie médicale, dans un hôpital, consiste en la détermination d’un diagnostic étiologique d’une infection, et le contrôle permanent du potentiel nosocomial dans une unité sanitaire.

Le médecin de laboratoire/microbiologiste/biologiste a comme rôle de faire la corrélation entre la signification clinique et l’analyse de laboratoire.

L’activité optimale d’un laboratoire de microbiologie repose alors sur 4 composantes :

- Le médecin de laboratoire/microbiologiste/biologiste,
- Le clinicien,
- Le personnel qualifié,
- L’équipement.

1.1) Équipement :

Comme dans l'autres laboratoires, le laboratoire de microbiologie doit avoir un espace adapté à son activité.
Dans l’idéal, cet espace doit comprendre :

Des salles de laboratoire spécifiques:
- Une salle de réception et d’enregistrement des échantillons.
- Une salle pour la conservation des produits biologiques,
- Une salle de travail,
- Une salle de préparation des milieux de culture,
- Une salle de nettoyage du matériel infectieux,
- Une chambre de stérilisation,
- Une salle de stockage du matériel,
- Une salle de stockage des réactifs et des milieux de culture,
- Un groupe sanitaire.

Des installations adéquates:
- L’eau courante, chaude et froide.
- Le gaz.
- L’électricité.

Mobilier nécessaire:
- Des plans de travail.
- Chaises.
- Armoires.

Microscopes:
Le laboratoire doit être doté de microscopes performants car la microscopie est le premiers pas dans le diagnostic bactériologique.

Les types de microscopes les plus utilisés sont :

- Les microscopes à lumière de fond,
- Les microscopes à fond noir,
- Les microscopes à contraste de phase,
- Les microscopes à lumière UV.

Verrerie de laboratoire:
- Lames et lamelles,
- Éprouvettes de différentes dimensions,
- Pipettes graduées, de dilution, automatique et semi-automatique,
- Tubes en verre,
- Bouteilles,
- Tubes de centrifugation,
- Baguette de verre, etc.
Instruments de laboratoire:
- Bec à gaz (qui produit une flamme à la température de 700-1000°C),
- Anses bactériologiques : bouclées, droites, calibrées,
- Seringues,
- Loupes simples, loupes binoculaires,
- Pinces, ciseaux, scalpels, etc.
- Kit de coloration.
- Boîte à déchets DASRI.

Equipement de laboratoire de microbiologie:
- Autoclave,
- Four Pasteur,
- Thermostat,
- Réfrigérateur,
- Congélateur,
- Balance de précision,
- Ordinateur,
- Centrifugeuse.

Figure 1 : Récipient pour les déchets piquants ou coupants et boîte pour les déchets à risque biologique.
1.2) Normes de protection du travail

L’activité du laboratoire doit être réalisée comme un circuit de travail partant du prélèvement de produit pathologique et arrivant à l’obtention de résultats. Il doit être organisé de façon à réduire, le plus possible, la probabilité d’erreurs de la part des manipulateurs.

Il faut éviter toute possibilité de contamination des prélèvements ainsi que du personnel médical qui manipule les produits, ou de transmission d’une infection à d’autres personnes.

Mesures obligatoires :

Le port de matériel de sécurité : blouse, gants, masque.

La répartition judicieuse des appareils et du matériel de laboratoire pour une économie de mouvements, et de déplacements inutiles.

Prévenir les défaillances ou accidents par :
 - Préparation de matériel de réserve,
 - La notation correspondante des produits et récipients utilisés.

La manipulation correcte du matériel infectant (récolte, examen, ensemencement, inoculation, etc.) se réalise en respectant les normes d’asepsie:

- Utilisation d’une flamme (pour stériliser les anses et la bouche des récipients)
- Utilisation de récipients, placés sous la table, pour jeter les emballages, déchets infectieux et déchets piquant-coupants.
- Nettoyage de la table avec des solutions désinfectantes.
- Nettoyage des mains immédiatement à l’eau et au savon.

Il faut s’assurer tous les jours du bon fonctionnement de l’équipement du laboratoire.
Ne pas fumer, ne pas manger dans l’espace de travail.
Stériliser, avec des ultra-violets, l’air et les surfaces de travail.
2) Stérilisation

La stérilisation est l’une des plus grandes réalisations de la microbiologie, étant donné qu’elle a été introduite dans la pratique médicale courante, elle a influencé l’évolution des spécialités chirurgicales, l’épidémiologie des maladies infectieuses, l’hygiène et à peu près toutes les spécialités médicales.

Le mot « stérile » a une origine latine et pourrait se traduire par « infertile ».

La stérilisation, comprend l’ensemble des techniques physiques et chimiques qui éliminent tous les germes viables (bactéries, spores, levures, virus et parasites) d’une surface ou à l’intérieur d’un corps.

Un objet stérile est donc dénué de toute forme de vie. Le critère de vérification de la stérilisation consiste en l’absence de multiplication de micro-organismes, quand ils ont introduits dans un milieu favorable.

La stérilisation ne consiste pas seulement en l’élimination complète des micro-organismes, mais aussi dans la prévention de la recontamination des objets stérilisés.

Dans le choix de la méthode de stérilisation, il faut prendre en compte la qualité physique et chimique des matériaux soumis à la stérilisation, mais aussi la sensibilité des micro-organismes, qui est différente en fonction des divers agents stérilisants.

Face à la méthode de chaleur humide, par exemple, les bactéries thermophiles sporulées peuvent survivre à des températures comprises entre 30°C et 134°C mais elles n’ont pas de réelle importance médicale, du fait de leur température de multiplication de 50°C.

Face aux agents chimiques, les spores de certaines bactéries sont beaucoup plus difficiles à éliminer que leur forme végétative.

Le choix d’un antiseptique ou désinfectant nécessite donc une connaissance précise de la résistance des micro-organismes potentiellement présents, tout comme la concentration active des substances respectives.
Dans le processus de stérilisation, il existe quelques règles générales :

- Le matériel stérile à usage unique et les dispositifs utilisés ne doivent jamais être réutilisés,

- Tous les dispositifs médicaux qui doivent être stérilisés, doivent d’abord être nettoyés par des méthodes physiques et désinfectés avant d’être soumis à un processus de stérilisation standardisé,

- L’organisation des activités de stérilisation et activités connexes (de nettoyage, désinfection, etc.), doit tenir compte de la nécessité de respecter les circuits fonctionnels : il est interdit d’effectuer ces activités dans un autre espace que celui destiné à ces opérations.

2.1) La classification des méthodes de stérilisation

Méthodes physiques :

- *Stérilisation par chaleur humide : l’autoclave*, avec vapeur sous pression, c’est une méthode de choix (si le dispositif médical supporte cette procédure), en règle générale, elle se réalise à une température de 121°C, pendant 30 min et à 1 atm.

 Indication de stérilisation à l’autoclave :

 - Matériel infectieux de laboratoire,
 - Milieux de culture,
 - Matériel en coton,
 - Objets en caoutchouc.

Il existe aussi les autoclaves « flash » qui s’utilisent surtout en cabinet chirurgical, ainsi, la stérilisation s’effectue à 134°C pendant 4 minutes, les instruments étant utilisables un court instant.
- **Stérilisation par ébullition** : C’est un procédé de fortune. Il faut remplir un récipient adapté d’eau (de préférence déminéralisée). Ensuite il faut faire attention à ajouter le matériau en verre avant de chauffer l’eau, le matériel métallique peut, quant à lui, être placé directement dans l’eau bouillante.

Pour le matériel de prélèvement, il faut laisser 20 minutes dans l’eau bouillante.

- **Stérilisation par chaleur sèche : l’étuve/four Pasteur**, se fait à 180°C pendant 1 heure ou à 160°C pendant 2 heures, assurant la carbonisation des formes végétatives et des formes sporulées de tous micro-organismes.

On retire les objets du four lorsque la température de l’air à l’intérieur du four descend aux alentours de 40°C.

Indication de stérilisation au four Pasteur :
- Verrerie de laboratoire,
- Objets en porcelaine,
- Instruments chirurgicaux et de stomatologie,
- Certains matériaux: talc, huiles (paraffine).

Attention, par cette méthode, on ne stérilise pas les solutions aqueuses, les objets en caoutchouc ou en coton, et le matériel contaminé de laboratoire.
Un cycle complet de stérilisation dure 4 à 5 heures, il comprend les phases suivantes :

- Phase de chauffage de l’appareil,
- Phase de latence (intervalle de temps entre le début de la diffusion de la chaleur et l’atteinte de la température de stérilisation),
- Phase de stérilisation (1 heure à 180°C ou 2 heures à 160°C),
- Phase de refroidissement.

Figure 3 : Pupinel (stérilisateur Memmert)

- **Stérilisation par flambage** : c’est un procédé qui ne doit être utilisé que pour les objets métalliques tels que les pinces ou scalpels, et non pour tout type de matériaux.

On place les instruments dans un plateau en métal, on verse quelques millilitres d’alcool et on enflamme. Pendant le flambage, il faut incliner le plateau dans un sens puis dans l’autre.

Les anses en platine doivent être chauffées à la flamme d’un brûleur à gaz ou d’une lampe à alcool, jusqu’à ce quelles soient portées à rouge.
Méthodes physico-chimiques :

- **Stérilisation à l’oxyde d’éthylène (ETO):** L’oxyde d’éthylène est un gaz incolore, allérgisant, irritant et peut former avec l’air un cocktail explosif. Il a l’avantage de pénétrer rapidement les divers matériaux synthétiques thermoplastiques. Vu sa dangerosité, son utilisation n’est possible que dans des conditions rigoureusement contrôlées.

Les bactéries sont tuées par l’action de l’oxygène de la molécule d’oxyde d’éthylène (CH₂OCH₂) à une température comprise entre 20 et 60°C.

Indication d’utilisation de l’ETO: pour les objets en plastic, emballés hermétiquement dans des emballages en plastic.

Après stérilisation il faut laisser les matériaux à l’air libre pour éliminer l’ETO résiduel, étant toxique pour la santé.

Cette méthode ne doit être utilisée seulement quand il n’existe pas d’autres moyens de stérilisation.

Mais il est tout de même interdit d’utiliser cette méthode:
- Pour le matériel médico-chirurgical dont la composition n’est pas connue,
- Pour la ré-stérilisation du matériel constitué de polychlorure de vinyle initialement stérilisé par radiation ionisantes ou rayons gamma.

- **Stérilisation au gaz plasma de peroxyde d’hydrogène:** c’est une nouvelle technique de stérilisation qui est utilisée pour la stérilisation du matériel qui ne supporte pas l’autoclave. C’est généralement le peroxyde d’hydrogène qui est utilisé comme agent de stérilisation.

Le plasma représente le quatrième état de la matière, étant constitué d’ions, d’électrons et de particules neutres, dans lequel se manifestent des interactions électromagnétiques et est électriquement neutre à l’échelle macroscopique.

Il peut être considéré comme un gaz total, ou partiellement ionisé, globalement neutre d’un point de vue électrique. Cependant, il est considéré comme un état distinct de la matière, ayant des propriétés spécifiques.

La température du plasma obtenue en laboratoire peut prendre des valeurs différentes pour chaque type de particule constituante.

Pour cette raison, la combustion du plasma dépend de nombreux paramètres, (concentration, champ électrique externe), il est impossible d’établir précisément une température à laquelle a lieu le passage de la matière de l’état gazeux à l’état de plasma.

En raison des charges électriques libres, le plasma conduit le courant électrique et est très influencé par les champs magnétiques externes.
2.2) La préparation du matériel pour la stérilisation

La préparation du matériel, des dispositifs, des instruments et de l’équipement médico-chirurgical pour la stérilisation se fait dans un espace définis et spécialement équipé.

La préparation du matériel comprend 6 étapes.

1) Décontamination du matériel :
Elle s’effectue manuellement, immédiatement après utilisation (à la fin d’une opération ou d’une manœuvre médicale) et le plus près possible du lieu où le matériel a été utilisé, pour éviter de contaminer le milieu hospitalier.

Le processus de décontamination se réalise par immersion des dispositifs utilisés dans une solution de détergent-désinfectant, avec comme effet de ramollir et détacher les saletés, en plus de l’action désinfectante.
Seul un objet bien nettoyé peut être stérilisé correctement.

2) Séchage du matériel :
L’instrumentation, les dispositifs et les pièces détachées seront disposés sur un plateau en métal, bois ou plastic, le séchage se faisant à l’aide d’une serviette propre et sans peluches.

3) Assemblage :
Les objets qui ont dû être démontés pour être nettoyés et désinfectés doivent être réassemblés avec attention.

4) Lubrification :
Consiste à graisser les instruments ou l’équipement médical, mais avec une attention particulière sur les articulations mobiles des instruments.

5) Vérification :
Doit être vérifié :
- Si le processus de nettoyage a été effectué correctement,
- L’intégrité des instruments,
- L’étanchéité et l’intégrité des pièces qui ont nécessité un démontage,
- Si les boîtes et couvercles de boîtes, pour l’instrumentation, ne présentent pas de déformations, défaillances ou des traces d’étiquettes précédentes.

Il faut ensuite trier les instruments pour les empaqueter, puis les stériliser.
6) Conditionnement :
Les opérations d’emballage, en vue de la stérilisation des instruments et des équipements médicaux, après que ces derniers aient été triés, vont être effectuées sur une surface destinée spécialement à cette tâche.

Le conditionnement peut se faire dans :
- Un papier spécial pour l’emballage de l’instrumentation ou du matériel textile (pour la stérilisation à la vapeur sous pression),
- Un sac en plastic conçu spécialement pour la stérilisation à l’air chaud ou à l’oxyde d’éthylène, et la stérilisation à la vapeur sous pression.

Le matériel emballé doit ensuite être placé dans des boites, ou paniers, métalliques.
Les paniers ainsi chargés sont finalement introduits dans l’enceinte du stérilisateur.
Il est interdit de réutiliser les sacs et les emballages pour d’autres instruments à stériliser et il est interdit d’utiliser des boites non-perforées pour la stérilisation à l’autoclave.

2.3) Le stockage et conservation du matériel stérilisé, après une opération de stérilisation

Lors de l’extraction du matériel stérilisé de l’autoclave, l’intégrité de l’emballage en papier spécial, ou en plastic, se vérifie visuellement.

Le stockage se fait en suivant les critères suivants :
- Dans un lieu sec et réservé à cet usage.
- Dans le respect de la gestion de la rotation du matériel.
- Dans le respect de l’intégrité des emballages et de l’étanchéité des containers.

Pour maintenir la stérilité du matériel qui a été soumis au processus de stérilisation, il est nécessaire d’assurer leur préservation dans des meubles fermés, eux-mêmes désinfectés correctement.

Il est interdit de déposer dans ces armoires d’autres objets. Pour diminuer le risque de contamination du matériel stérile, il faut le manipuler le moins possible et dans un parfait état de propreté.

Les durées de validité du matériel stérile, dans les conditions de conservation correspondantes, sont les suivantes :
- Pour les boîtes métalliques perforées : 24 heures.
- Pour les instruments emballés dans des sacs en plastic scellés : 2 mois (sauf si le producteur signale une autre durée de validité sur l’emballage).

Les dispositifs médicaux stérilisés doivent être étiquetés avec la date, l’heure et le nom de la personne qui a effectué la stérilisation.

2.4) Contrôle de la stérilisation

Le contrôle de la stérilisation à l’autoclave peut s’effectuer par 3 méthodes :

1) Le test de vérification par pénétration de la vapeur (Bowie & Dick) :

Il est aussi appelé « test dynamique d’élimination de l’air » et il est très sensible. Il est utilisé pour mettre en évidence l’air résiduel ou les gaz inertes de la chambre de stérilisation (autoclave). Cela empêche l’introduction correcte de la vapeur dans les zones respectives, ce qui met en péril le processus de stérilisation.

C’est un test colorimétrique utilisant un pigment chimique thermo-réactif, susceptible de changer de couleur en fonction des paramètres auxquels il est soumis.
Le pigment vire du bleu clair au vert foncé, de manière uniforme lorsque les trois paramètres de la stérilisation ont été atteints: température, temps et vapeur d’eau saturée.

![Figure 4 : Test de stérilisation Bowie & Dick.](image)
2) Indicateurs physico-chimiques :

Les indicateurs physico-chimiques pour le contrôle de la stérilisation se présentent sous différentes formes: bandelettes adhésives avec indicateur, sacs avec marqueurs de couleurs et étiquettes indicatrices.

Ces indicateurs se placent dans chaque boîte et se vérifient à l’ouverture de tous les paquets stérilisés.

Mais le virement de couleur des indicateurs physico-chimiques ne garantie pas forcément une stérilisation correcte, la sensibilité n’est donc pas très élevée.

3) Indicateurs biologiques :

Les indicateurs biologiques sont des tests biologiques pour le contrôle de l’efficacité de la stérilisation, qui contiennent des spores du genre *Geobacillus stearothermophilus* et *Bacillus subtilis*. Ils se présentent sous forme de:

- Fiole en plastic thermorésistant avec à l’intérieur une bandelette imprégnée avec *Geobacillus stearothermophilus* pour la stérilisation à l’autoclave ou pour la stérilisation au plasma.
- Bandelette imprégnée avec *Bacillus subtilis*, pour la stérilisation au four Pasteur.

La réalisation du contrôle bactériologique de la stérilisation se fait en plaçant au moins deux indicateurs biologiques, une fois par semaine. Dans le cas où les tests sont positifs, c’est-à-dire si il y a croissance bactérienne, il faut réviser immédiatement les appareils de stérilisation.
3) Antiseptiques et désinfectants

3.1) Définitions

La décontamination représente tous les moyens utilisés pour l’élimination et la destruction des micro-organismes (ce qui comprend: nettoyage désinfection et stérilisation).

Le nettoyage est l’étape préliminaire obligatoire, permanente et systémique dans toute les activités ou procédures d’élimination de souillure (matière organique ou inorganique), d’une surface, y compris les téguments, ou d’un objet. Le nettoyage s’effectue par action mécanique ou manuelle, utilisant des agents chimiques ou physiques, et s’effectue dans les unités sanitaires de tous types pour assurer le déroulement optimal de l’activité médicale.

Normalement, elle est suivie par la désinfection, et la stérilisation.

La désinfection est la procédure pour la destruction de la majorité des micro-organismes de toutes les surfaces (y compris les téguments), utilisant des agents physiques et/ou chimiques.

Les germicides sont des substances qui détruisent les micro-organismes mais pas tous les spores bactériens. Leur effet peut être bactéricide, bactériostatique, sporicide, tuberculocide, fongicide et virucide.

On distingue :
- Les antiseptiques : utilisés pour les tissus vivants (téguments, muqueuse, plaies), car peu toxiques pour l’organisme.

Certaines substances, en fonction de la concentration, peuvent être considérées comme antiseptiques ou désinfectant (Chloramine B).

Les biofilms: Ce sont des couches de micro-organismes qui adhèrent fortement aux surfaces organiques ou inorganiques, et qui sont très résistantes aux substances biocides.

La stérilisation est l’opération visant à détruire tous les micro-organismes (y compris les spores bactériens, en fonction de la méthode utilisée) sur les objets contaminés, le résultat étant l’état de stérilité.
3.2) Nettoyage

Pour le nettoyage on utilise simplement une brosse humide (manuelle ou automatique), en bon état et propre, ustensiles et produits de nettoyages, et en respectant certaines règles :

- Le respect des instructions et recommandations du producteur,
- Si le produit doit être dilué, il ne faut pas le conserver ainsi, mais l’utiliser directement après la dilution, sans le conserver,
- Les récipients doivent être étiquetés avec le nom du produit et la date d’expiration,
- Il est interdit de mélanger les produits,
- Le port d’équipement de protection est obligatoire,
- Le personnel qui utilise ces produits doit y être spécialement formé.

Il est préférable que les opérations de nettoyage commencent dans les zones les moins contaminées et progressent vers les zones les plus contaminées.

3.3) Désinfection

La désinfection est la procédure qui s’applique seulement après le nettoyage (et dans certains cas, est suivie du rinçage). Exception faite pour les supports contaminés par des produits biologiques, dans cette situation, la première étape est la désinfection, suivie par le nettoyage et enfin une deuxième étape de désinfection.

Dans toutes les activités de désinfection, il faut appliquer les mesures de protection du travail, pour éviter les accidents et intoxications.

Désinfection par chaleur sèche ou flambage: cette technique n’est utilisée que dans le laboratoire de microbiologie (pour désinfecter les anses ou le goulot des flacons en verre).

Désinfection par chaleur humide: ne s’utilise que dans le cas du lavage automatisé du linge et de la verrerie, dans des conditions de température aux alentours de 90°C.

Désinfection aux rayons ultra-violets: n’est indiqué que pour la désinfection des surfaces lisses et de l’air, dans les box de laboratoire, salles d’opérations, ou autres espaces fermés, pour compléter les mesures de nettoyage et de désinfection chimique.
Désinfection aux produits chimiques : Se réalise par l’utilisation de produits biocides de type 1 et 2 ;

- Les produits de type 1 sont utilisés pour la désinfection des mains et des peaux intactes.

Il existe 3 niveaux de désinfection, en fonction des substances utilisées, des concentrations et du temps de contact:

- Désinfection de haut niveau: réalise la destruction des bactéries sous forme végétative, des champignons, des virus, des mycobactéries et la majorité des spores bactériens. Cette forme de désinfection peut aussi s’appliquer aux dispositifs médicaux réutilisables, destinés aux manœuvres invasives, et qui ne supportent pas l’autoclave. Les produits de ce niveau sont enregistrés dans le « registre de désinfection de haut niveau ».

- Désinfection de niveau intermédiaire: réalise la destruction des bactéries sous forme végétative, des champignons, des mycobactéries et des virus, mais n’agit pas sur les spores bactériens.

- Désinfection de faible niveau: réalise la destruction de la majorité des bactéries sous forme végétative, des certains champignons, de certains virus mais n’agit pas sur les spores bactériens, les mycobactéries et virus non-enveloppés.

Les solutions chimiques pour la désinfection de haut niveau doivent être utilisées sous 48 heures ou après 30 cycles d’utilisation.
Les critères de choix pour l’utilisation des désinfectants sont :
- Le spectre d’activité adapté aux objectifs fixés,
- Le type d’action,
- En fonction de la section dans laquelle ils sont utilisés, ils doivent avoir une certaine efficacité malgré la présence de substances interférantes (sang, pus, vomi, diarrhée, matières organiques, etc.),
- La rémanence la plus élevée possible sur les surfaces,
- La compatibilité avec le matériel utilisé,
- La dangerosité du produit (toxicité, nocivité, inflammabilité, etc.),
- La facilité d’utilisation,
- La stabilité du produit dans le temps,
- La nature du support qui va être traité,
- La nature biodégradable du produit, en accord avec les exigences du milieu.

Voici quelques substances désinfectantes et leurs propriétés :

1. **Chlore (hypochlorite de sodium)**

Le chlore est un désinfectant universel, actif contre tous les micro-organismes, mais principalement les bactéries. Il est aussi efficace pour l’inactivation des protéines. On le trouve généralement sous forme d'hypochlorite de sodium, avec des concentrations variables en chlore actif. C'est un oxydant corrosif pour les métaux et toxique pour les voies respiratoires, la peau et les yeux. Comme désinfectant général, on utilisera une solution à 1 g/litre de chlore actif. Pour nettoyer du sang répandu ou en présence de grandes quantités de matières organiques, il est recommandé d'utiliser une solution plus concentrée, contenant 5 g/litre de chlore actif.
2. **Chloramine**

La chloramine en poudre contient environ 25% de chlore actif. Dans la mesure où le chlore est libéré plus lentement qu'avec les hypochlorites, la concentration initiale doit donc être supérieure pour que l'efficacité soit comparable à celle des hypochlorites.

En revanche, les matières organiques n'interfèrent pas autant avec la chloramine en solution qu'avec l'hypochlorite. Elle est recommandée à la concentration de 20 g/litre, en présence ou en l’absence de souillures.

3. **Formaldéhyde**

Le formaldéhyde est un gaz actif contre absolument tous les micro-organismes sauf à basse température, c'est-à-dire en-dessous de 20°C, et l'humidité relative doit être de 70%.

Il est commercialisé sous forme de polymère solide, le paraformaldéhyde, présenté en flacons ou en comprimés. Ou sous forme de gaz dissous dans l'eau, le formol, à la concentration d'environ 370 g/litre (37%), associé au méthanol (100ml/l) comme stabilisant.

Il est utilisé sous ces deux formes pour la décontamination de l'air mais on peut utiliser le formaldéhyde à 18,5 g/litre comme désinfectant liquide.

Comme la plupart des désinfectants, il est toxique pour la peau, les yeux et les voies respiratoires.

4. **Glutaraldéhyde**

Le glutaraldéhyde est également actif contre tous les micro-organismes. Il est présenté sous forme de solution à la concentration de 20 g/litre, mais il doit être activé avant son utilisation, au moyen d'un composé bicarbonaté fourni avec le produit. La solution devient alors alcaline. La solution activée doit être utilisée dans les deux semaines. Les solutions de glutaraldéhyde seront jetées si elles deviennent troubles. Le glutaraldéhyde est considéré comme toxique, irritant et mutagène. On évitera d'exposer la peau, les yeux et les voies respiratoires.

5. **Alcools et mélanges alcooliques**

L'éthanol (alcool éthylique) et le 2-propanol (isopropanol) ont des propriétés désinfectantes comparables. Ils sont actifs contre les formes végétatives des bactéries, champignons, mycobactéries et virus, mais ils sont inefficaces contre les spores. Il est à noter que l'alcool s'évapore rapidement et que son pouvoir désinfectant est supérieur quand il est mélangé avec de l’eau (solution alcoolique à 70% par exemple).
Pur ou trop concentré, il est bien moins efficace, car le manque d’eau libre entraîne la sporulation des micro-organismes, qu’il est censé détruire. Or l’alcool est inefficace contre les formes sporulées, qui ne seront alors pas détruites.

6. Iode et iodophores

L’action de ces désinfectants est comparable à celle du chlore. Les surfaces propres peuvent être traitées efficacement avec des solutions contenant 0,075g/litre d’iode actif, mais la présence de quantités importantes de protéines pose des problèmes. Ils sont utilisés pour le lavage des mains ou comme sporicides. Les iodophores peuvent être dilués dans l’éthanol.

7. Peroxyde d’hydrogène

Le peroxyde d’hydrogène est un désinfectant puissant en raison de ses propriétés oxydantes. Il est utile pour la décontamination des appareils, mais il ne doit pas être utilisé sur l’aluminium, le cuivre, le zinc ou le laiton. Il se présente sous forme de solution à 30% dans l’eau (eau oxygénée) et il est dilué dans cinq fois son volume d’eau pour l’utilisation. Il est instable dans les climats chauds et doit toujours être protégé de la lumière.

Règles générales pour la pratique de la désinfection :

- La désinfection complète le nettoyage mais ne le termine pas et ne remplace pas non plus la stérilisation,
- Pour la désinfection en cas d’épidémie, il faut utiliser un désinfectant qui agit sur l’agent pathogène incriminé ou supposé,
- L’utilisation des désinfectants se fait en respectant les normes de protection du travail, qui préviennent le risque d’accidents et d’intoxications,
- Il est nécessaire d’effectuer un tableau avec l’historique des opérations de nettoyage et de désinfection, comprenant: la date, l’heure, le personnel et le type d’opération,
- Le personnel doit connaître la dénomination du désinfectant, la date de préparation, la concentration et le temps d’action.

En ce qui concerne le matériel qui vient en contact avec les tissus du corps humain, on ne choisira pas les mêmes désinfectants.
C’est pour cela qu’on classifie les surfaces comme suit:

- **Critiques** : pour les surfaces des instruments qui viennent en contact avec les tissus, voire les pénètrent. Ces dispositifs doivent être stérilisés. (Par exemple: la quasi-totalité du matériel chirurgical, les cathéters cardiaques et urinaires, les endoscopes flexibles ou rigides, etc.)

- **Semi-critiques** : pour les surfaces qui viennent en contact avec les muqueuses intactes et ne pénètrent pas la barrière tégumentaire, à l’exception de la muqueuse parodontale ou la peau lésée. (Par exemple: les endoscopes, laryngoscopes, l’équipement d’anesthésie et de respiration assistée, etc.)

- **Non-critiques** : Pour les surfaces qui ne viennent pas en contact avec le patient ou seulement sur la peau intacte de ce dernier. (Par exemple: le stéthoscope, les bassines, la manchette du tensiomètre, etc.)

Les surfaces inertes comme les murs, le sol, le mobilier de l’hôpital et les objets sanitaires sont encadrés dans la catégorie non-critique.

Désinfection de l’air :

Moyens physiques : la lampe U.V, qui s’utilise en complément des mesures de nettoyage et de désinfection, car elle n’a qu’une action limitée.

Moyens chimiques : l’application des désinfectants se fait par l’utilisation d’aérosols.

Désinfection des mains :

Le lavage des mains fait partie des **Précautions Standard** et s’appliquent à tout le personnel médical-spatial, administratif, patient, visiteurs, étudiants et volontaires, en vue de la diminution des risques d’apparition des infections associées aux soins médicaux.

Les mains constituent la principale voie de transmission pour de nombreux agents pathogènes d’un patient à l’autre, du personnel aux patients et des patients au personnel.

L’hygiène des mains doit être considérée comme étant la plus importante procédure pour la réduction de la transmission des micro-organismes.

Les mains sont le support d’une **flore résiduelle**, qui est représentée par les micro-organismes saprophytes, constituant la flore normale des téguments.
Elle a un rôle protecteur et est peu incriminée dans les infections associées aux soins médicaux.
Elles sont tout de même capables d’infecter des milieux normalement stériles (sang, cavités articulaires, plaies, œil, etc.).

Les mains sont aussi le support d’une *flore de transition*, qui résulte de la contamination occasionnelle des mains par les micro-organismes, en particulier dans le milieu hospitalier.
Cette flore colonise l’épiderme pour une période limitée, mais cause fréquemment des infections nosocomiales du fait de la transmission accidentelle, par contact direct ou indirect (c’est à dire par l’intermédiaire d’un objet ou d’une surface contaminée).

Le lavage des mains devrait s’effectuer dans les circonstances suivantes :

- Avant de rentrer en contact avec le patient,
- Avant les procédures de nettoyage et d’asepsie,
- Après l’exposition aux fluides d’un patient,
- Après le contact avec le patient,
- Après le contact avec les surfaces proches du patient.
4) Milieux de culture

La majorité des bactéries et des champignons peuvent être cultivés en laboratoire sur des milieux inertes, acellulaires, mais le reste des micro-organismes, comme les bactéries parasites intracellulaires obligatoires (rickettsies, chlamydies) et les virus, se cultivent sur des cultures de cellules, dans des œufs embryonnés et animaux de laboratoires.

Il existe des milieux adéquats pour à peu près toutes les bactéries d’intérêt médical, cependant, très peu de bactéries restent impossibles à cultiver par les méthodes usuelles. C’est le cas par exemple de Mycobactérium leprae et Treponema pallidum.

La connaissance des nécessités nutritives des bactéries est donc très importante en bactériologie, car elle est à la base de la préparation des milieux de culture destinés à l’isolement et au développement des micro-organismes dans des conditions artificielles, dans un but diagnostique ou dans un but productif.

L’utilisation de milieux de culture permet l’isolement de micro-organisme en culture « pure », facilitant ainsi leur identification.
On les utilise également, pour tester la sensibilité des micro-organismes aux chimiothérapies anti-infectieuses.

Cela permet donc le choix d’une médication ciblée, dans l’industrie pharmaceutique, pour la production de préparations (vaccins et autres produits biologiques) et pour le contrôle de la colonisation microbienne des surfaces, de l’air, de l’alimentation, de l’eau, etc.

Les milieux de culture répondent aux conditions suivantes :

- Ils doivent être stériles,
- Ils doivent contenir les substances nutritives nécessaires pour la croissance et la multiplication des micro-organismes (eau, carbone et azote, facteurs de croissance, vitamines, etc.),
- Ils doivent avoir un pH optimal, la plupart des germes se développant à un pH compris entre 7.2 et 7.4 mais les germes du genre Brucella, par exemple, se développent à un pH de 6,8,
- Ils doivent être clairs pour permettre la mise en évidence de toutes les modifications produites par les germes, dans le milieu de culture,
- Ils doivent permettre les conditions d’aérobie ou d’anaérobie.
4.1) Composition des milieux de culture

Les milieux de culture se préparent à partir de substances biologiques, plus ou moins bien définies chimiquement et qui se retrouvent dans à peu près tous les milieux de cultures.

Dans la recherche, quand on étudie les performances métaboliques des bactéries, il est nécessaire d’utiliser des milieux avec une composition bien définie. Les substances biologiques rencontrées dans la majorité des milieux sont des peptones, des extraits de viande, des extraits de levures, dans lesquels on ajoute des substances comme le chlorure de sodium, des mono/polysaccharides, des vitamines, etc.

Les peptones sont des mélanges de substances obtenues par hydrolyse enzymatique, ou acide, des protéines d’origine animale. Elles n’ont pas de composition chimique clairement définie mais du fait de la présence de protéines et d’acides aminés, elles constituent une source universelle d’azote pour toutes les bactéries cultivables.

Les extraits de viande s’obtiennent par la déshydratation d’une préparation de viande de bœuf. Cette préparation contient des quantités importantes de créatine, xanthine, hypoxanthine, acide urique, urée, glycogène, acide lactique, etc.

Les extraits de levures s’obtiennent par la mise en culture contrôlée de levures et contiennent de nombreuses vitamines, principalement du groupe B.

Le chlorure de sodium s’ajoute à tous les milieux de culture usuels, à une concentration de 0,9%.

Les mono/polysaccharides, certains alcools enrichissent les milieux de cultures car ils constituent une source de carbone facilement accessible pour beaucoup de bactéries.

Dans certains milieux de culture on peut encore ajouter des indicateurs colorimétriques de pH, des agents sélectifs, etc.

Les agents de solidification sont l’agar-agar et la gélatine (plus rarement car certaines bactéries ont la capacité d’hydrolyser la gélatine, qui se liquéfie alors à 37°C, température à laquelle se développent la majorité des bactéries d’intérêt médical).
4.2) Classification des milieux de culture

Les milieux de culture se classifient par divers critères, dont nous étudierons la dimension physique, la complexité et le but pour lequel ils sont utilisés.

En fonction de la provenance, les milieux sont naturels (bouillon, milieux Tarozzi avec blanc d’œuf, Loeffler avec sérum de bœuf et œuf), et synthétiques ou artificiels (milieux Thayer-Martín, MacConkey, etc.).

En fonction de l’état physique, les milieux sont liquides (bouillon, eau peptonée), semi-solides (gélifiés avec 5% d’agar), et solides.

Les milieux liquides : ils ont une large utilisation dans les laboratoires de microbiologie médicale.

Ainsi, certains produits biologiques, comme le sang, destiné aux hémocultures, s’ensemencent sur des milieux liquides.
En outre, les souches microbiennes isolées en culture pure sont soumises à des tests biochimiques, avec pour objectif de les identifier. La majorité de ces tests s’effectue sur des milieux liquides (fermentation des sucres par exemple).

Les milieux liquides offrent, sans aucun doute, les meilleures conditions de croissance et de multiplication des bactéries, mais ils ne peuvent généralement pas être utilisés pour l’isolation d’un micro-organisme, à partir d’un produit biologique qui n’est pas naturellement stérile, sauf si on ajoute un agent sélectif dans le milieu.

Le bouillon s’obtient par décoction de viande à laquelle on ajoute du NaCl et des peptones.

Tous les milieux, pour la culture des bactéries récoltées à partir du sang (hémoculture), ont comme composition de base le bouillon, auquel on ajoute des facteurs X et V, des vitamines B6, K3, des facteurs anticoagulants et inhibiteurs de l’effet bactéricide du sérum, en fonction des germes isolés (aérobies, anaérobies, champignons).
Les milieux solides
Ils s’obtiennent à partir de milieux liquides gélifiés avec de l’agar-agar (1,5-2%).
L’agar-agar est un gel extrait d’une algue marine rouge, originaire d’Asie. D’un point de vue chimique c’est un polymère d’ester sulfurique et de galactose. Il est insoluible dans l’eau froide mais soluble dans l’eau bouillante. Après refroidissement, il produit une gélification du milieu à concentration 0,5-1%.
L’agar n’a pas de valeur nutritive et contrairement à la gélatine, il n’est pas attaqué par les enzymes bactériennes.
Les milieux solides peuvent s’utiliser en « boites Petri », en tubes (colonne inclinée, colonne droite), ou sur des dispositifs en plastic.
La culture de bactéries sur milieu solide a constitué une avancée déterminante dans le développement de la microbiologie.
L’avantage étant que les bactéries ne se développent pas en mélange, mais en colonies isolées, si elles ont ensemencées avec une technique correcte.

La colonie microbienne est une entité macroscopique (visible à l’œil nu) qui résulte de la multiplication d’un seul micro-organisme.

Les caractères culturels ont une importance particulière dans l’identification des micro-organismes. Ils donnent des informations sur la forme, la dimension, la consistance, l’activité hémolytique et les modifications que les germes peuvent induire sur les milieux respectifs.

Aussi, la culture sur milieu solide donne la possibilité de compter les germes microbiens issus d’un produit pathologique.
Aspect important, surtout quand le critère d’implication étiologique est numérique (pour les infections urinaires par exemple). Le milieu solide le plus simple est le milieu « gélose simple ».

La gélose simple se prépare à partir d’un bouillon auquel on ajoute de l’agar-agar (1000ml de bouillon chauffé et 25-30g d’agar-agar).

De nombreux milieux solides ont pour base le milieu gélose: Mueller-Hinton, Chapman, Thayer-Martin, AABTL, ADCL, MacConkey, Hektoen, Sabouraud, Schaedler, etc.

Les milieux semi-solides: Ce sont des milieux avec 0,2-0,5% d’agar-agar, ils s’utilisent pour le maintien de la viabilité des germes, l’étude de leur activité biochimique ou leur mobilité.

Les milieux enrichis: Les milieux simples comme la gélose simple ou le bouillon simple, sont des milieux usuels, sur lesquels se développent la majorité des micro-organismes.

Les besoins en substances nutritives spécifiques de certaines bactéries, ont entraîné l’apparition de milieux de culture « enrichis » contenant: purines, pyrimidines, acides-aminés, facteurs de croissances, etc., car elles sont incapables de les synthétiser.

Le plus utilisé des milieux enrichis est « la gélose sang 5% », qui se prépare par l’ajout de 5ml de sang dans l’agar fondu puis refroidit à 45°C. Le plus souvent, on utilise du sang de mouton ou de cheval, et plus rarement du sang de lapin.

Sur la gélose sang, on peut observer si les bactéries ensemencées ont une activité hémolytique ou non. Cette activité hémolytique et certains autres caractères culturels peuvent différer en fonction de l’espèce animale d’où provient le sang. Il est contre-indiqué d’utiliser du sang humain pour la préparation de la gélose-sang. Le sang humain contient des substances antibactériennes qui empêchent le développement de certains germes. Le procédé est pratiqué dans certains laboratoires, par manque de sang de mouton.

La gélose chocolat s’obtient par l’ajout de 10% de sang de mouton dans une gélose simple, chauffée à 60-80°C.

Les milieux de culture peuvent encore être enrichis par l’addition de sucre, ascite, sélénite, thioglycolate, sérum (dans le cas du milieu **Loefler** pour les germes du genre *Corynebacterium*), extraits de levures, œuf, viande, facteurs de croissance X ou V (pour les germes du genre *Haemophilus*), etc.
En fonction des objectifs pour lesquels on les utilise, les milieux de culture se classent en milieux: de transport, sélectifs, différentiels, et spéciaux.

Les milieux de transport: assurent les conditions optimales pour le maintien de la viabilité des micro-organismes entre le moment du prélèvement et le moment de l’ensemencement.

![Figure 7 : Exemples de milieux de transport.](image)

Les milieux sélectifs: favorisent la multiplication d’une seule espèce microbienne, en défaveur de toutes les autres.
Les milieux sélectifs liquides s’appellent « **milieux d’enrichissement** », ils s’utilisent quand un produit pathologique est polymicrobien et qu’il faut isoler une espèce en culture pure.

Connaissant les particularités métaboliques des espèces isolées, on peut favoriser chaque espèce d’un mélange microbien en intervenant sur les facteurs de sélection chimiques, sur le pH, sur la pression osmotique, sur la température de culture, etc.

Le milieu **Mueller-Kauffmann** est un exemple de milieu d’enrichissement avec inhibiteurs chimiques.

Pour les milieux sélectifs solides, les critères de sélection sont les mêmes. Le plus souvent, on utilise des antibiotiques comme inhibiteurs chimiques, en tenant compte de la résistance naturelle des diverses espèces microbiennes. Si par exemple, nous voulons isoler des bactéries anaérobies, à Gram négatif, nous ajoutons dans le milieu de la vancomycine, qui est très efficace contre les bactéries à Gram positif.
(La Vancomycine est un antibiotique de réserve pour le SARM.)
En fonction du pouvoir de sélection, on classe les milieux en :

- **Milieux hautement sélectifs** : Wilson-Blair (pour l’isolation de Salmonelles), Lowenstein-Jensen (pour l’isolation de *Mycobacterium tuberculosis*), Thayer-Martin (pour l’isolation de *Neisseria gonorrhoeae, Neisseria meningitidis*).

- **Milieux modérément sélectifs** : ADCL, Istrati-Meitert (pour l’isolation d’entérobactéries), SS (pour l’isolation de *Salmonella* sp., *Shigella* sp.), XLD, Hectoen, etc.

- **Milieux faiblement sélectifs** : MacConkey, EMB (levin)

Les milieux d’enrichissement et les milieux sélectifs sont utilisés pour l’isolation primaire, c’est à dire directement à partir du produit biologique récolté.

![Figure 8](image)

Figure 8 : Milieux sélectifs : (a) SS ; (b) Sabouraud ; (c) agar-Schaedler ; (d) Mueller Hinton.

Les milieux chromogènes sont des milieux sélectifs, qui contiennent des substrats artificiels, qui après hydrolyse par les enzymes bactériennes, produisent des composés colorés.

Ces milieux sont : CPS (pour l’isolation d’entérobactéries), CHROMagar (pour l’isolation et l’identification des espèces de *Candida* sp., entérobactéries, vibrions, staphylocoques, etc.), Rainbow UTI, Chromogenic UTI.
Les milieux différentiels contiennent des substances pour mettre en évidence certaines enzymes ou toxines bactériennes, et des systèmes indicateurs qui confèrent aux colonies des particularités distinctives, qui permettent de les reconnaitre facilement.

Ces milieux permettent la différenciation d’espèces de bactéries du même genre, mais aussi des espèces de bactéries de genres différents. Ainsi, le milieu gélose-sang est un milieu qui différencie les bactéries hémolytiques des non-hémolytiques.

La mise en évidence des caractères biochimiques (de métabolisme) se réalise en pratique, sur des milieux différentiels solides ou liquides :

- Les milieux polytropes, qui permettent l’identification de plusieurs caractères biochimiques : TSI, MIU, MILF
- Le milieu Simons, qui permet d’identifier les bactéries qui utilisent le citrate comme unique source de carbone.
- Le milieu gélose-esculine, avec de la lysine ou de la phénylalanine.

En pratique, les propriétés nutritives, sélectives et différentielles se rencontrent dans les milieux :

- Wilson Blair: Pour les salmonelles, il contient comme facteur de sélection le vert brillant, le facteur différentiel étant la production de H$_2$S. La réaction indicatrice est la formation de sulfure de bismuth noir avec brillance métallique, par la réduction du sulfite (réaction d’oxydo-réduction).
- **Chapman**: Pour les Staphylocoques, il est sélectif en raison du sodium. Il permet l’identification des espèces par la réaction de fermentation du mannitol du milieu. *S.aureus* fermente le mannitol, tandis que *S.epidermidis* ne le fermente pas.

- **Mac Conkey agar**: Pour les entérobactéries (grâce aux sels biliaires du milieux qui inhibent la flore à Gram positif et grâce à la fermentation du lactose du milieux), il permet la différenciation des espèces d’*E.coli, Klebsiella, Salmonella, Proteus*.

- **Tous les milieux chromogènes**: Ils permettent, sur base de caractères biochimiques, la décomposition de substances chromogènes contenues dans le milieu. Cela permet la différenciation d’espèces d’un même genre, les genres d’unes même famille et les familles entre elles.

![Figure 10 : Milieux différentiels (a) Mac Conkey ; (b) Chapman ; (c) CHROMagar UTI ; (d) Gélose-sang.](image)

Dans un intérêt diagnostique, on utilise des milieux de culture déshydratés avec une composition chimique bien définie, incorporés dans de petites cuves en plastic.
Les galeries sont formées de 10, 20, 32 cuvettes, avec des tests d'activité enzymatique, de fermentation des sucres, de catabolisme protéique ou d'acides aminés, permettant, par l'intermédiaire de substances spécifiques et un indicateur de pH, la variation de couleur, facilitant ainsi l'identification des germes. Ces milieux sont regroupés sous l’appellation « Galeries API ».

Figure 11 : Gallerie API, (a) API 20NH, (b) API 10S.

Les milieux spéciaux sont des milieux sur lesquels on ne cultive que certaines bactéries, ou ce sont des milieux avec des indications spéciales :

- Löwenstein Jensen : Pour l’isolation du bacille de Koch,
- Tynsdale et Gundel Tietz : Pour l’isolation du bacille diphtérique,
- Bordet-Gengou : Pour la culture du bacille de la toux convulsive,
- Sabouraud : Pour la culture des champignons,
- Agar Mueller-Hinton (et dérivés sang, chocolat, etc.): Pour tester la sensibilité (par diffusimétrie) des germes à la chimiothérapie anti-infectieuse,
- Bouillon Mueller-Hinton: pour tester la sensibilité (par dilution) à la chimiothérapie anti-infectieuse,
- Bouillon thioglycolate: pour l’isolation des germes anaérobies à partir du sang (hémoculture).
5) Les principes généraux pour le diagnostic de laboratoire des infections

Le laboratoire de Microbiologie médicale a le rôle de préciser :

- Le diagnostic étiologique d’une infection,
- La sensibilité des bactéries identifiées face aux antimicrobiens,
- L’évolution des espèces et leur résistance face aux antimicrobiens dans un hôpital ou une région.

Les étapes du diagnostic de laboratoire peuvent être représentées par le schéma suivant :

Figure 12 : Les étapes du diagnostic microbiologique
Il est important de noter que :

- La récolte du produit biologique doit se faire avant l’administration d’antibiotiques.
- L’examen macroscopique permet d’orienter le diagnostic.
- Le diagnostic sérologique vise l’identification de la réponse immunitaire humorale, représentée par le titre d’anticorps spécifiques dans le sérum du patient, par réaction d’agglutination, fixation du complément, ELISA, RIA, etc.
6) La récolte et le transport d’échantillons

Le choix de la méthode de récolte, conservation et transport du produit pathologique dépend de la nature du produit, on distingue alors :

- Les produits normalement stériles (sang, LCR, exsudat de séreuse, urine),
- Les produits qui se contaminent lors de leur élimination de l’organisme, avec la flore normale de la voie d’élimination (urine, crachat),
- Les produits contaminés (matières fécales, exsudat nasopharyngien, le pus provenant de plaies ou brûlures, sécrétions vaginales), et qui peuvent provenir de zones normalement colonisées par des micro-organismes.

La récolte est un point de rencontre entre la clinique et le laboratoire de microbiologie. Si la récolte n’est pas correctement réalisée, aucune technique de laboratoire ne permettra l’identification des germes.

Il faut pour cela connaître :

- Dans quel produit biologique peut se trouver la bactérie suspectée, en fonction de l’étape clinique de l’évolution de la bactérie,
- Quel est le meilleur moment de la journée pour la récolte,
- Si le prélèvement est normalement stérile, ou s’il présente la flore normale,
- Quel est le procédé le plus juste pour éviter la contamination du prélèvement,
- Quels sont les instruments nécessaires à la réalisation du prélèvement,
- Quelle est la quantité nécessaire pour chaque prélèvement,
- Comment conditionner le produit,
- Quel est le temps optimal de transport jusqu’au laboratoire,
- Quelles sont les procédures de conservation des prélèvements.

Les produits biologiques doivent être accompagnés d’un bulletin d’analyses dans lequel est inscrit : le nom et le prénom du patient, l’âge, le domicile, le nombre de feuilles d’observation, la section et la date d'admission à l'hôpital, la date et l’heure du prélèvement, le type et la provenance du prélèvement, le diagnostic de présomption et des indications sur le traitement antibiotique.
Les prélèvements pour lesquels est sollicité le laboratoire sont en général :
- Les sécrétions, excréptions, humeurs, tissus organiques (pathologiques ou porteurs sains).
- Les fragments de tissus obtenus par autopsie ou biopsie.
- Les produits alimentaires.
- Les produits pharmaceutiques.
- L’eau, l’air.

Quelques exemples de prélèvements :

- Sécrétions nasales (exsudat nasal): Chez les adultes, le prélèvement se fait avec un tampon nasal stérile (un tampon pour chaque narine).

On immobilise la tête du patient en extension, on introduit délicatement le tampon dans le nez, le long du plancher nasal jusqu’à atteindre la paroi postérieure du nasopharynx.

On le laisse quelques secondes, puis on le tourne doucement pour qu’il soit imprégné d’exsudat, après quoi, on le retire doucement.

La quantité du prélèvement est plus grande si on retire et réinsère le tampon au même endroit, le premier tamponnement stimulant les sécrétions muqueuses nasopharyngées. On réintroduit le tampon dans son tube protecteur et on l’envoie immédiatement au laboratoire ou bien on l’introduit dans un liquide conservateur pour le conserver jusqu’à son analyse.

La deuxième façon de récolter se fait en aspirant avec une sonde Nélaton reliée à une seringue.

- Sécrétions pharyngiennes (exsudat pharyngien): Le prélèvement se fait avec un tampon pharyngien.

Il est préférable de réaliser le prélèvement le matin, à jeun, avant la toilette de la cavité buccale, afin de ne pas diminuer la flore bactérienne en actionnant le nettoyage mécanique muqueux, par le biais de la toilette buccale ou de la mastication.

Sinon il se réalise entre 3 et 4 heures après nettoyage de la cavité buccale, gargarisme avec un antiseptique, ou ingestion d’aliments.

Le patient est assis, le cou en légère extension, la bouche grande ouverte, le pharynx bien éclairé, la base de la langue (face dorsale) maintenue avec une spatule stérile (abaissement de la langue).

On introduit le tampon sans toucher la langue ou le palais (pour ne pas contaminer l’échantillon avec la flore buccale) et encore moins l’uvule (pour ne pas déclencher le réflexe de régurgitation).
On tamponne fermement par un mouvement circulaire et on frotte la surface des amygdales, de la paroi postérieure de pharynx ainsi que les zones enflammées, ulcérées, et avec des sécrétions purulentes.

On retire le tampon avec précaution, on le réintroduit dans le tube protecteur et on l’envoie immédiatement au laboratoire ou bien on l’introduit dans un liquide conservateur pour le conserver jusqu’à son analyse.

- **Crachats** : Le prélèvement se fait le matin par la toilette des bronches, parce qu’au cours de la nuit, le dépôt de sécrétions est plus abondant.
 On peut faire deux types de prélèvement :
 Indirect : On demande au patient d’effectuer un rinçage énergique de la cavité buccale avec du sérum physiologique (ne pas utiliser de solution antiseptique), puis de tousser et d’expectorer dans un récipient stérile (boîte pétri, verre Berzelius).
 Direct : Par bronchoscopie ou pas ponction trachéale.
 Chez les enfants on réalise le prélèvement par lavement gastrique ou sondage gastrique car ils ont tendance à avaler le produit de prélèvement.

- **Sang** : En conditions normales, le sang est stérile, puisqu’il possède la capacité d’éliminer les microbes. En tant que produit pathologique, il peut être prélevé pour examen bactériologique ou sérologique.

Pour l’examen bactériologique, on réalise une hémoculture qui révèle la présence de bactéries dans le sang en ensemencant un échantillon de sang dans un milieu de culture adéquat. Le prélèvement se fait de préférence dès la survenue des premiers frissons (les frissons et la fièvre apparaissent 1 à 2 heures après l’arrivée des bactéries dans le sang, moment à partir duquel elles commencent à se multiplier).

On utilise un kit d’hémoculture, qui comprend :
- Une seringue stérile de type Luer de 20 ml équipée d’une aiguille,
- Une aiguille de rechange,
- Une compresse stérile,
- Du matériel désinfection des téguments,
- Un garrot,
- 3 séries de flacons (type BACTALERT® ou BACTEC®), qui contiennent des milieux de culture liquides pour bactéries aérobies, anaérobies et champignons,
- On travaille à l’abri des courants d’air, pour éviter toute contamination aérienne.

On assoit le patient, le bras détendu pour mettre en évidence les veines du pli du coude. On désinfecte le pli du coude sur une grande surface ainsi que les mains du préleveur, avec une solution iodée, puis avec de l’alcool.
On applique le garrot au dessus du pli du coude pour compresser et mettre en évidence les veines. On immobilise la veine la plus accessible avec les doigts de la main gauche et avec la main droite on ponctionne.

On extrait 10 à 20 ml de sang (en moyenne 15 ml), en phase aigue de la maladie, tandis qu’en phase chronique, on en préleve plus, en moyenne 30 ml (à noter que chez le nourrisson le volume prélevé est de l’ordre d’un à trois millilitres de sang).

Après le prélèvement on retire d’abord le garrot, puis on retire l’aiguille, et enfin on réalise l’hémostase avec une compresse imbibée d’alcool. On remplace ensuite l’aiguille de ponction par celle de réserve à l’aide d’une compresse stérile. On ensemence immédiatement le sang dans un milieu de culture liquide, comme suit :

- On ensemence 5 ml de sang dans un flacon contenant 50 ml de bouillon, que l’on incube à 37°C dans une atmosphère riche en CO₂ pour isoler les bactéries micro-aérophiles.
- On ensemence 5 ml de sang dans un flacon contenant 50 ml de bouillon VF, que l’on incube à 37°C en conditions anaérobies, pour isoler les bactéries anaérobies.

Le rapport optimal sang/milieu de culture est de 1/10 (c’est le rapport optimal pour diluer le sang et empêcher l’activité des facteurs antimicrobiens naturels).

Dans le cas où le patient a été traité sous antibiotiques, on introduit dans le milieu de culture des substances qui ont un effet neutralisant sur ces derniers. Dans ce but, on préleve 10 ml de sang dans un récipient stérile qu’on laisse à température ambiante pendant une heure pour que le sang coagule, se dépose dans le fond du récipient et qu’apparaisse un surnageant de plasma.

On transfère le plasma dans un récipient stérile puis on le centrifuge pour obtenir le sérum qui servira au test de diagnostic sérologique.

- **Pus** : Le pus est un liquide visqueux formé de leucocytes intactes ou altérés, de micro-organismes, de restes cellulaires et de fibrine. Le pus des collections purulentes fermées est récolté par un chirurgien par incision.

On ne préleve pas le pus de la surface des collections, car il contient des bactéries mortes, après nettoyage de la plaie, on préleve le liquide situé en profondeur.

Le pus des collections purulentes ouvertes peut être prélevé en laboratoire.

On désinfecte les téguments avec une solution iodée autour des collections purulentes.

Le prélèvement se fait à l’aide d’un tampon stérile (le même que pour les sécrétions nasales), ou avec une anse bactériologique après avoir retiré et éliminé la couche superficielle de pus.
Pour les collections purulentes fistulisées, on désinfecte les téguments avec une solution iodée, on introduit une pipette Pasteur dans le trajet de la fistule et on aspire.

- **Matières fécales** : En général on examine les échantillons de selles éliminées spontanément. On explique au patient qu’il ne faut pas contaminer les selles avec l’urine puis on lui demande de déféquer dans un récipient stérilisé par ébouillantement ou à l’autoclave (on évite de stériliser avec une solution désinfectante qui empêche le développement des germes du produit pathologique).

Immédiatement avec la défécation, on prélève avec la languette stérile, fixée au bouchon du récipient de coproculture, les produits pathologiques suivants:
- Fragments muqueux,
- Fragments sanguinolents,
- Fragments purulents (quand ils existent),
- Fragments de matière fécale prélevée à différents endroits, si les selles sont homogènes.

Après le prélèvement on met en suspension un gramme de produit pathologique dans le milieu de transport contenu dans le récipient de coproculture. L’échantillon ainsi prélevé est immédiatement envoyé au laboratoire pour traitement. Pour dépister la présence d’entérobactéries pathogènes, on examine l’échantillon de selles provoquées par lavement.

Chez les adultes on administre 15g de sulfate de magnésium dans 250 ml d’eau. Chez les enfants on adapte les doses en fonction de l’âge.

Le prélèvement par tampon rectal se fait sous coloscopie et s’effectue principalement chez les patients présentant un syndrome de dysenterie.

On place sur une tige de bois un amas de coton stérile que l’on insère par l’orifice anal, on frotte avec soin la muqueuse rectale puis on retire le tampon délicatement.

Immédiatement après le prélèvement on introduit le tampon dans un milieu de transport spécialisé et on l’envoie au laboratoire pour traitement.

Dans les cas où il est difficile d’obtenir des matières fécales par élimination spontanée on peut effectuer le prélèvement avec un tampon rectal ou une sonde Nélaton. Le prélèvement par sonde Nélaton se fait lors du prélèvement du contenu du côlon sigmoïde.

On introduit une sonde Nélaton stérile par l’orifice anal et le rectum jusqu’au côlon sigmoïde (15 à 25 cm chez les adultes, 10 à 20 cm chez les enfants).

Le contenu du côlon sigmoïde est aspiré avec une seringue de 10 ml, fixée au bout de la sonde. L’échantillon est déposé immédiatement dans un récipient de coproculture et mélangé au milieu de transport.
- **Urine** : L’urine se prélève pour les urocultures dans le but de mettre en évidence les micro-organismes pathogènes (ECBU = Examen Cyto-Bactériologique d’Urines).
Le prélèvement se fait de la même façon chez les hommes et chez les femmes.

Le recueil des urines du matin se fait selon la méthode dite du "milieu de jet" ou "à la volée". Elle consiste à éliminer le premier jet (20 ml environ) puis à recueillir les 20 à 30 ml suivants dans un flacon stérile.
On réalisa au préalable la toilette totale de l’organe génital externe, qui consiste à laver avec de l’eau et du savon la vulve chez la femme, et le gland chez l’homme. Il est déconseillé d’essuyer ensuite avec une serviette car cela peut contaminer l’organe génital avec les micro-organismes présents sur la serviette.
Il est préférable de récolter les premières urines du matin ou minimum 3 heures après la dernière miction.

Le patient urine environ 10 ml pour le dépistage quantitatif des micro-organismes pathogènes et environ 30-50 ml pour le dépistage des micro-organismes pathogènes particuliers (comme par exemple le Bacille de Koch).
On élimine le premier jet d’urine qui a pour rôle de débarrasser l’urètre de la flore saprophyte qui existe à ce niveau. Après quoi, sans interruption du jet d’urine, on prélève dans un récipient stérile le volume nécessaire d’urine (jet intermédiaire).

L’échantillon récolté est envoyé immédiatement au laboratoire ou est conservé à 4°C jusqu’au moment de son analyse.
Le cathétérisme se pratique uniquement sur les patients qui ne peuvent pas uriner spontanément et relève des compétences de l’urologue, car il expose le patient à des risques infectieux.
Pour prévenir les infections il est recommandé de manipuler le cathéter dans le respect des conditions d’asepsie jusqu’à la fin de la procédure d’introduction dans la vessie complètement vidée, et après introduction de 50 ml d’une solution saline stérile avec 40mg de Néomicine et 20mg de Prolimixine B.
L’aspiration supra-pubienne: C’est la seule méthode de prélèvement pour dépister les bactéries anaérobies dans l’urine et c’est la méthode la plus efficace pour éviter la contamination urétrale de l’échantillon.

Le patient est bien hydraté et s’abstient d’uriner jusqu’à ce que la percussion supra-pubienne révèle une matité vésicale et que la palpation déclenche le besoin urgent d’uriner.
La région supra-pubienne est préalablement épilée puis décontaminée avec de l’alcool iodé, puis on aborde la vessie par ponction au dessus de la symphyse pubienne avec une seringue de 10 ml, sur laquelle est fixée une aiguille à ponction.
L’urine est expédiée au laboratoire immédiatement après le prélèvement pour être examiné dans l’heure qui suit de prélèvement. Si on ne peut pas respecter cet intervalle, il est nécessaire de réfrigérer le produit à 4°C jusqu’au moment de l’analyse.

- **Sécrétions urétrales** : Ici, le prélèvement diffère entre les hommes et les femmes.

- Chez la femme, le prélèvement se fait le matin avant la miction. La patiente s’installe en position gynéco logique pour favoriser l’accès au méat urétral, puis on réalise la désinfection de l’organe génital externe. On pénètre avec l’index couvert d’un gant dans le vagin, on le ressort en longeant la paroi antérieure et on prélève l’exsudat ainsi obtenu avec un tampon au niveau du méat. Le prélèvement peut aussi se faire avec l’aide d’un tampon qui s’insère sur une courte distance dans la lumière urétrale.

Le prélèvement correct des sécrétions génitales chez la femme est décisif pour le diagnostic. Ainsi, des germes impliqués dans une pathologie vaginale, comme les *Trichomonas vaginalis*, *Candida*, *Gardnerella*, se trouvent dans les sécrétions du cul-de-sac postérieur du vagin. Le gonocoque, à l’inverse de *Chlamydiae* ne se multiplie pas dans le col utérin. C’est la raison pour laquelle il est obligatoire de récolter simultanément 2 échantillons. Le prélèvement s’effectue en cabinet de gynécologie.

- Cher les hommes, le prélèvement se fait le matin avant la miction. Dans les urétrites aiguës, on récolte les fuites urétrales spontanées. Aussi, il est obligatoire de récolter la sécrétion de l’intérieur de l’urètre. Pour cela on introduit dans l’urètre, à une distance de 1 à 2cm, un tampon mince que l’on fait tourner quelques secondes en prévenant le patient que la manœuvre est un peu douloureuse.

Par cette manœuvre, on obtient les cellules épithéliales urétrales dans lesquelles se multiplient les *Chlamydiae*, une cause fréquente d’urétrites. Le tampon de prélèvement peut-être remplacé par une boucle de platine, stérilisée et refroidie, introduite dans l’urètre en suivant les mêmes indications que pour le tampon. L’échantillon ainsi récolté se traite immédiatement. Chez les patients avec une urétrite chronique, la sécrétion est réduite et apparaît sous forme de gouttes matinales.

- **Sécrétions vaginales** : Les sécrétions vaginales du cul-de-sac se récoltent avec deux ou trois tampons de coton, avec lesquels on effectue le frottis et l’ensemencement.
- **Sécrétions cervicales**: Après avoir retiré le mucus du col utérin, on insère fermement le tampon dans le col et on tourne durant quelques secondes pour obtenir un plus grand nombre de cellules épithéliales endo-cervicales. Le prélèvement peut aussi se faire avec un écouvillon cytologique, ce qui, d’après certains auteurs, augmenterait la sensibilité des méthodes de diagnostic. L’écouvillon cytologique ne peut pas s’utiliser chez la femme enceinte, son utilisation étant risquée pour ces dernières.

- **Sécrétion de chancre**: On nettoie la lésion avec un tampon stérile et du sérum physiologique, puis on aspire les sérosités avec une pipette pasteur. On effectue une préparation primaire, entre une lame et une lamelle, que l’on examine au microscope à contraste de phase ou à fond sombre. On peut stimuler la sécrétion en couvrant le chancre avec de l’éther qui, en s’évaporant, va stimuler la sécrétion.

- **Liquide Céphalo-Rachidien**: Le prélèvement de LCR s’effectue au lit du patient par ponction lombaire (rachidienne) ou occipitale, dans des conditions rigoureuses d’asepsie, à l’aide d’une aiguille spéciale d’une longueur de 6 à 10 cm et d’un diamètre de 1 mm. Le volume nécessaire pour les examens bactériologiques, biochimiques et cytologiques, est de 10 à 15 ml chez les adultes, et de 2 à 10 ml chez les enfants, volume réparti de manière égale dans 3 éprouvettes différentes. Le transport vers le laboratoire se fait immédiatement et à une température la plus proche possible de 37°C (le méningocoque étant très sensible aux variations de température). La durée du transport est très importante, et si on souhaite isoler ultérieurement *N. meningitidis* (très sensible aux variations de températures) dans le liquide rachidien, il doit arriver encore frais au laboratoire. Dans le cas contraire, un résultat négatif pour le LCR n’a aucune valeur.
Figure 13 : Récipients stériles pour le prélèvement de produits biologiques.

Il ne faut pas négliger le fait que chaque prélèvement est potentiellement une source de contamination pour le personnel qui le manipule.
7) L’examen direct des produits pathologiques

Quand un produit arrive au laboratoire de microbiologie, on part du principe qu’il a été correctement récolté et conditionné.

7.1) L’examen macroscopique :

Il a une valeur importante, non seulement pour dépister les erreurs de prélèvement, mais aussi pour orienter le diagnostic bactériologique.

Le liquide céphalo-rachidien : on observe la couleur, la turbidité, la présence de dépôt ou de caillot, avant de le soumettre à la centrifugation. Normalement le LCR est limpide, comme « de l’eau de source ». En présence de signes de méningite (fièvre, raideur de la nuque, photophobie), et même si le LCR est claire, on suspecte une méningite ou une tuberculose. Un LCR trouble signifie la présence de leucocytes et indique une infection bactérienne.

Le pus : On observe sa couleur, sa consistance et son odeur. La couleur du pus varie en fonction de la présence de bactéries. La bactérie pyogène la plus fréquente en pathologie infectieuse est le *Staphylococcus aureus*, qui produit un pus jaune crémeux. Le pus, dans les infections au bacille pyocyanique (*Pseudomonas aeruginosa*), est verdâtre, avec une odeur parfumée. Le pus, dans les infections causées par les actinomycètes, est granulé.

L’urine : On observe la couleur, le degré de turbidité, la présence et la nature de potentiels sédiments, la présence de filaments. Si l’urine est trouble, il faut déterminer si cela est causé par les leucocytes ou par les sels. Un chauffage léger de l’urine, à la flamme, entraîne la disparition de la turbidité causée par les sels.

Les expectorations : On observe l’aspect, la couleur, la présence de fragments purulent. Dans la pneumonie pneumococcique, les expectorations ont une couleur de rougeâtre. Dans les anciens traités de sémiologie médicale, on disait que « le malade crache le diagnostic ».

Les matières fécales : On cherche la présence de pus, de sang, ou d’un excès de mucus. Dans la dysenterie pathognomonique, les selles sont muco-purulentes et sanguinolentes.
7.2) L’examen microscopique :

L’examen microscopique a un rôle fondamental en microbiologie, étant une étape importante dans l’analyse des produits biologiques. L’examen microscopique direct restreint la zone d’investigations, indiquant les modalités ultérieures du diagnostic microbiologique. On utilise, habituellement :

- Microscope à fond clair,
- Le microscope à fond noir,
- Le microscope à contraste de phase,
- Le microscope à U.V.

Avec un microscope, on examine des préparations entre lame et lamelle, des frottis fixés, colorés ou bien des préparations colorées avec des substances fluorescentes à la lumière U.V.

La préparation entre lame et lamelle, en lumière directe, elle est utilisée pour mettre en évidence des cellules (PMN, érythrocytes), des germes mobiles dans les prélèvements liquides (urine, LCR, liquide de kystes), des protozoaires des matières fécales, etc.

Dans les matières fécales (suspensions en sérum physiologique stérile ou Lugol), on peut observer des bactéries avec une mobilité caractéristique en « spirale », en « tirebouchon », il peut s’agir de *Campylobacter*, *Helicobacter*, *Vibrio cholerae* ou la présence d’éléments parasitaires (œufs, kystes, etc.).
Dans les sécrétions vaginales, on peut visualiser la présence, la morphologie et la mobilité caractéristique de *Trichomonas vaginalis*.

Le microscope à fond noir s’utilise pour déceler *Treponema pallidum*, corroboré avec les données cliniques, il peut établir l’étiologie de l’infection.

Le frottis coloré effectué directement avec le produit récolté, fournit des données qui se réfèrent à la présence de cellules inflammatoires (PMN, macrophages), sur la morphologie des bactéries (cocci, bacilles, vibrions, spirales), sur la disposition (en grappe, en amas, en diplo, en tétrade, en chaine, en lettres majuscules ou chinoises), sur la relation avec les cellules existantes dans le produit biologique (intra ou extracellulaire).

L’examen microscopique permet à la fois une appréciation qualitative et quantitative. Le frottis peut s’effectuer à partir d’une culture microbienne, pour pouvoir orienter ultérieurement les tests d’identification.
Pour effectuer un frottis coloré, il faut une lame de verre parfaitement propre et dégraissée, une anse bactériologique, des pipettes Pasteur et des colorants.

L’étalement : À partir des produits pathologiques liquides, on peut effectuer des frottis directement, en tant que tel, avec une pipette Pasteur. On dépose et on étale une goutte sur la lame, en faisant attention à laisser les marges libres. On laisse sécher le frottis à la température de la salle.

Quand la densité des germes est faible dans un produit biologique liquide (LCR, urine), on le soumet à centrifugation à 3000 tours/minute, pendant 10 minutes. On utilise alors le sédiment pour réaliser le frottis. On charge la boucle de l’anse stérile avec une petite quantité du sédiment, et on l’étale au milieu d’une fine lame.

Fixation : C’est une étape nécessaire pour que le produit biologique adhère à la lame, pour tuer les bactéries et pour faciliter l’absorption du colorant sur la surface de la lame.

Les frottis sont fixés avant d’être colorés, le plus souvent à la flamme. La lame passe 3 ou 4 fois dans la flamme, chauffant le côté opposé au frottis. La fixation à l’alcool méthylé ou à la solution de May-Grunwald-Giemsa est préférée si on voit aussi la morphologie des cellules contenues dans le produit biologique.

Coloration : Habituellement au laboratoire de microbiologie, les frottis sont simplement colorés avec un seul colorant, les éléments de la préparation ayant tous la même couleur, éventuellement avec une intensité différente. On peut différencier les éléments avec des colorants différents.

Les bactéries quant à elles, se colorent différemment en fonction de leurs caractères morpho-tinctoriaux.

On utilise souvent la coloration simple au bleu de méthylène, et les coloration différentielles Gram et Ziehl-Neelsen. Dans le cas où la cytologie a une valeur diagnostique particulière, on peut colorer les frottis avec la coloration May-Grunwald-Giemsa.

1. Coloration simple au bleu de méthylène.

Le frottis fixé à la flamme sont couverts de bleu de méthylène, qu’on laisse agir 1 à 2 minutes. On rince à l’eau, on laisse sécher et on observe au microscope à immersion (l’objectif est dit « à immersion » parce qu’il doit être immergé dans une huile spéciale qui a le même indice de réfraction que le verre).

On observe des bactéries bleu foncé sur un fond bleu clair.

On peut aussi observer des leucocytes, des PMN, des lymphocytes, des levures, etc.
2. Coloration de Gram.

Elle représente la coloration de base en microbiologie et a été décrite en 1884 par le médecin danois Hans Christian Gram.
La coloration de Gram permet de mettre en évidence les propriétés de la paroi bactérienne et d'utiliser ces propriétés pour les distinguer et les classifier.
On distingue ainsi deux grands groupes de bactéries grâce à la structure de leur paroi: les gram positifs et les gram négatifs.
La paroi des bactéries est un élément rigide présent chez presque toutes les bactéries, à qui elle donne la forme et confère une protection mécanique.
Elle contient une structure rigide, composée de sucre et de différents acides aminés, appelée le peptidoglycane. Dans la paroi des bactéries à Gram négatif, il existe une membrane externe, composée de protéines, lipides et polysaccharides. Cette membrane externe n’est pas présente chez les bactéries à Gram positif.
La différence de couleur, violet pour les bactéries à Gram positif et rouge pour les bactéries à Gram négatif, est due à des différences de structure, plus exactement, de perméabilité de la paroi cellulaire.

Le principe de coloration consiste à colorer les bactéries avec un colorant appelé « cristal violet » et réaliser une fixation avec une solution de Lugol (solution iodé de potassium).
Il se forme ainsi un complexe insoluble avec l’acide ribonucléique cellulaire, coloré en violet.
La différence entre les bactéries à Gram positif et à Gram négatif consiste en une différence de perméabilité de la paroi cellulaire pour ce complexe, après décoloration avec de l’alcool-acétone ou de l’alcool pur.
Après la décoloration, on recolore avec un autre colorant : la fuchsine.
Les bactéries à Gram positif gardent le complexe violet alors que celles à Gram négatif le perdent et se coloreront à nouveau en rouge avec la fuchsine.
Il faut souligner que les bactéries à Gram positif retiennent le complexe violet uniquement si la structure de leur paroi est intacte, si la cellule bactérienne a sa paroi cellulaire altérée, elle va perdre ce complexe.

Technique de coloration :
- On étale le produit biologique sur une lame, à l’aide d’une anse bactériologique stérilisée ou d’une pipette pasteur en fonction du produit à étudier, et on le fixe à la flamme.
- Le frottis fixé est couvert d’une solution de cristal violet, pendant au moins une minute.
- On rince la lame et on recouvre avec du Lugol pendant au moins une minute (l’iode sert à fixer la coloration).
- On rince le Lugol et on décolore, pendant quelques secondes avec une solution d’alcool-acétone, ou deux minutes avec de l’alcool pur.
- On lave avec de l’eau.
- On couvre la lame avec une solution de fuchsine diluée.
- On lave encore une fois à l’eau, on sèche et on examine au microscope avec l’objectif à immersion.

La résistance à l’acidité et à l’alcool est une propriété des bactéries du genre *Mycobacterium* (bacille de la tuberculose et de la lèpre) et *Nocardia*. Ces bactéries se colorent à la chaleur à cause de la structure de la paroi cellulaire qui présente une couche superficielle de cire. Une fois colorées, elles ne peuvent plus être décolorées à l’alcool ou aux acides. Ce type de coloration peut être effectué directement sur les expectorations, collections purulentes, sédiments du LCR ou liquide pleural.

Les bacilles acido-alcool résistants (BAAR), c’est à dire le Bacille de Koch et le bacille de la lèpre, se colorent en rouge sur fond bleu, avec cette technique. Le reste des germes présents se colorent en bleu. Ces bacilles ne perdent pas leur coloration après décoloration à l’alcool ou à l’acide, du fait de la présence d’acides mycoliques et des propriétés de perméabilité sélective de la membrane cellulaire.

On peut tout de même colorer ces bactéries avec des substances fluorescentes, comme l’auramine, ou un mélange d’auramine et de rhodamine.

Elle s’utilise pour les préparations de sang, les sécrétions vaginales, urétrales, exsudats de sèreuses, ponctions médullaires, etc.

Elle permet la visualisation précise de la morphologie cellulaire (anomalies, atypies, suspicions de modifications néoplasiques), l’appréciation quantitative des PMN et l’étiole bactérienne.

- Le frottis se fixe avec de l’alcool méthylique ou de l’alcool-ether, pendant 2 à 3 minutes.
- On recouvre avec une solution de Giemsa diluée, 20 à 30 minutes.
- On sèche et on examine au microscope avec objectif à immersion.
8) Isolation des germes sur milieu de culture, à partir d’un prélèvement

La voie à suivre est déterminée par le produit biologique, qui est déterminant dans le choix du milieu de culture. Le microbiologiste doit savoir quel micro-organisme peut être rencontré dans les divers produits récoltés chez le patient, les exigences nutritives et les possibilités de mise en culture.

L’objectif est d’obtenir des bactéries sous forme de colonies isolées qui vont être identifiées grâce à leurs caractéristiques culturelles, métaboliques, pathogéniques et antigéniques.

Pour les germes que l’on ne peut cultiver sur milieux usuels (pour rappel : Treponema pallidum, Mycobacterium leprae, Chlamydia, Rickettsies), le diagnostic va se baser sur la mise en évidence directe ou de leurs antigènes dans les produits biologiques (par IF, ELISA, PCR, etc.) ou par examen sérologique.

Les prélèvements normalement stériles vont, en général, être ensemencés sur des milieux solides non-sélectifs (gélose sang, gélose chocolat, etc.) en atmosphère micro-aérophile.

Le choix du milieu pour les produits contenant la flore normale dépend du degré de contamination de ces produits. Ainsi, l’exsudat pharyngien peut être ensemencé sur gélose sang, quant aux matières fécales, il faut les ensemencer sur des milieux enrichis et sélectifs, qui peuvent isoler toutes les espèces infectantes possibles.

Ces produits doivent parfois être ensemencés sur plusieurs milieux, parce qu’ils peuvent contenir des bactéries aux besoins nutritifs différents.

L’ensemencement se fait en déposant des prélèvements dans un milieu de culture pour cultiver des bactéries, on utilise en général une anse bactériologique mais on peut utiliser une pipette Pasteur, en fonction des besoins.

La reproduction est le réensemencement de souches microbienennes d’un milieu à l’autre.

L’isolation est le procédé par lequel on obtient une culture pure de bactéries (Une seule espèce présente sur le milieu).
On utilise des boîtes de Petri, que l’on ensemence et incubue à 37°C avec le couvercle entre-ouvert pour que la surface du milieu sèche. Si le séchage n’est pas suffisant, les colonies pourront confluer et ne vont pas se développer isolément.
La boîte se met sur le plan de travail avec le couvercle en bas. On la prend de la main gauche et on disperse une petite quantité du produit bactérien sur un secteur limité de la boîte, avec une anse (stérile ou à usage unique) tenue par la main droite. On répète le geste de balayage sur plusieurs secteurs de la boîte et en théorie, il reste moins de bactéries et donc moins de colonies sur le dernier secteur ensemencé.

Figure 14 : Techniques d’ensemencement.

L’incubation consiste à maintenir les milieux de culture ensemencés dans des conditions optimales de température et de pression d’oxygène.
En général, les cultures se développent en 18-24h après incubation, mais cela dépend des espèces, certaines ont besoin de plusieurs semaines.
La température optimale est de 37°C, mais certaines bactéries se développent à 28°C, comme les bactéries du genre *Leptospira*.
En ce qui concerne les nécessités en oxygène, les bactéries strictement aérobies et anaérobies facultatives, se cultivent en présence d’air atmosphérique. Les bactéries micro-aérophiles se développent en atmosphère micro-aérophiile.

8.1) Culture à partir d’un produit normalement stérile

Le sang : Le sang, pour réaliser une hémoculture, est récolté en période de septicémie et l’idéal serait de réaliser l’ensemencement directement au lit du patient.
Il faut empêcher la coagulation du sang, mais sans utiliser d’anticoagulants, qui ont une action antibactérienne, le sang est donc dilué dans le milieu de culture (rapport 1/10).
On ensemence le sang dans un bouillon, plus précisément dans trois ballons. Il est préférable que le bouillon ait été préchauffé à 37°C, pour protéger les micro-organismes sensibles aux variations de température. On incube les ballons à thermostat 37°C en condition d'aérobie, de micro-aérobie (avec 5-10% de CO₂), et d'anaérobie.

Les milieux de culture ensemencés sont introduits dans des incubateurs spécial Bactec® ou Bactalert®), qui assure la température de 37 °C et signalent par signal lumineux et sonore les hémocultures positives / négatives. Les positifs seront ensuite ensemencés par le personnel du laboratoire sur des milieux de culture solide afin d'identifier les germes. Les bactéries qui peuvent se multiplier dans le sang appartiennent à différentes familles et aux espèces bactériennes aérobies àGram positif ou aérobies facultatives (Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Enterococcus), Gram négatif (Acinetobacter spp. Pseudomonas aeruginosa) ou des champignons. Les bacilles à Gram positif ou corynéformes, staphylocoques à coagulase négative, Micrococcus, Propionibacterium, etc. peuvent contaminer le flux sanguin.

De nos jours, il existe une grande variété de milieux de culture proposés par diverses firmes productrices, ce qui simplifie et améliore les performances des hémocultures.

L'urine : L'urine est un produit biologique stérile et les infections urinaires sont le plus souvent mono-microbiennes. Les milieux sur lesquels sont ensemencés l'urine sont : gélose-sang et un milieu lactosé semi-sélectif comme par exemple Mac Conkey. L'urine s'ensemence telle quelle, avec deux anses calibrées respectivement à 1 et 4 mm. À la première anse correspond une quantité de 0,001ml, contre 0,01ml pour celle de 4mm. L'urine ensemencée est étalée par la technique d'isolation des bactéries. L'ensemencement de quantités fixes est obligatoire pour pouvoir apprécier le nombre de germes par millilitre d'urine, nombre qui est décisif pour le diagnostic d'infection urinaire (à partir de 100000/ml).

L'agent étiologique de l'infection urinaire le plus fréquent est Escherichia coli. Si on suspecte une infection par des germes exigeants (comme Mycobacterium tuberculosis), l'urine sera ensemencée sur un milieu spécial : Löwenstein-Jensen.
Le LCR : Le LCR est centrifugé et l'ensemencement se fait à partir du sédiment à l'aide d'une anse bactériologique.

On utilise un milieu gélose-sang et un autre milieu gélose-chocolat, incubés en micro-aérobie et anaérobie. On étale le LCR en stries denses en les distançant de la zone dans laquelle on a fait la décharge de l'inoculum. Après incubation à 37°C pendant 24h, on obtient des colonies isolées.

Les bactéries que l'on retrouve le plus souvent sont: *Streptococcus pneumoniae*, *Haemophilus influenzae*, *Neisseria meningitidis*, etc.

Le liquide séreux (pleural, péricardique, ascite, synovial) : Le sédiment obtenu après centrifugation est ensemencé sur milieu gélose-sang et dans un bouillon. Un des deux milieux est incubé en micro-aérophilie, l'autre en anaérobie. Pour les bacilles anaérobies non sporulés et pour les streptocoques anaérobies, il est nécessaire de réaliser une incubation d'au moins de 3 semaines.

Les germes le plus souvent rencontrés sont: *Streptococcus pneumoniae*, *Streptococcus pyogenes*, *Staphylococcus aureus*, *Mycobacterium tuberculosis*, etc.

Le pus : On décharge le tampon ou l'anse d'une petite quantité de pus (si celui-ci à été récolté dans un récipient), sur deux milieux gélose-sang (l’un est incubé en anaérobie et l’autre en aérobie avec l’ajout de 10% de CO₂) et sur milieu sélectif, Gélose-chocolat avec ajout d’antibiotiques et Sabouraud pour l’isolation des champignons.

L’ensemencement sur milieu solide se fait en étalant le pus en stries à la surface du milieu. Pour l'obtention de colonies isolées on continue l'ensemencement sur la surface en d'autres secteurs, sans recharger l’anse.

On examine les boîtes deux jours après. Si elles restent stériles après l’incubation, on les remet en incubation pour encore un jour et on regardera l'aspect des colonies.

Les germes le plus fréquemment isolés dans les plaies fermées et les brûlures sont: *Staphylococcus aureus*, *Streptococcus pyogenes*, *Escherichia coli*, *Pseudomonas aeruginosa*, Streptococcus hémolytique (appartenant à d'autre groupe que le groupe A), bactéroïdes sp, bactéries anaérobie.

8.2) Culture à partir d’un produit colonisé par la flore normale

L’exsudat pharyngien : Les germes qui donnent le plus fréquemment des pharyngites, sont : *Streptococcus pyogenes* et *Staphylococcus aureus*. Ils se développent de façon optimale sur gélose-sang.

Pour l'isolation de *Streptococcus pyogenes*, on ensemence le tampon pharyngien sur le milieu enrichi Pick (avec azoture de sodium et cristal violet). Après 24h, maintenu à 37°C, on l'ensemence sur gélose sang et on incube en anaérobie avec ajout de 10% de CO₂.
Les streptocoques beta-hémolytiques de groupe A et *Streptococcus pneumoniae* grandissent parfois mieux en anaérobie qu'en aérobie.
Il est bien d'ensemencer aussi l'exsudat sur une gélose-chocolat, sur laquelle se développent les espèces *Haemophilus* et *Neisseria*.

Si le médecin a besoin d'isoler d'autres germes que ceux habituels, il doit le spécifier clairement dans le bulletin d'analyse.
Par exemple, pour la diphtérie, maladie rare de nos jours grâce au vaccin antidiphtérique, l'exsudat est ensemencé sur un milieu spécifique pour le bacille diphtérique.

L'exsudat nasal : Il s'ensemence sur gélose-sang et gélose-chocolat, et s'incube en aérobie avec ajout de 5% de CO₂ pour l'isolation de *Neisseria meningitidis*, *Haemophilus* sp.et *Staphylococcus aureus*.

L'exsudat otique : On l'ensemence sur les mêmes milieux que l’exsudat pharyngien. Les germes les plus rencontrés sont *Staphylococcus aureus*, *Streptococcus pneumoniae*, *Pseudomonasa eruginosa*, *Proteus*, etc.

Sécrétions bronchiques : Les germes que l'on isole le plus souvent de ces produits pathologiques sont *Streptococcus pneumoniae*, *Neisseria meningitidis*, *Haemophilus*, etc.
Pour isoler *Neisseria meningitidis*, l'ensemencement se fait directement sur gélose-sang-chocolat et l'incubation a lieu en aérobie avec ajout de 10% de CO₂. Pour isoler les bacilles à Gram négatif (*Klebsiella* sp, *Pseudomonas* sp, *Acinetobacter* sp.) d'une aspiration chez un patient hospitalisé et intubé, l'ensemencement se fait sur milieu lactosé ou chromogène. Si le pédiatre souhaite la confirmation d'une toux convulsive, les sécrétions seront ensemencées sur milieu Bordet-Gengou, qui est spécifique pour *Bordetella pertussis*.

Produits pathologiques récoltés au niveau de la cavité buccale : En cas d'ulcère, d'abcès dentaire, l'isolation des germes montre la présence de *Streptococcus pyogenes, Staphylococcus aureus, Candida albicans*. Pour l'isolation des staphylocoques et des streptocoques, l'ensemencement se fait sur gélose-sang, mais, pour *Candida albicans*, on utilise le milieu Sabouraud.

Crachats : Par leur ensemencement, on observe l'isolation de *Streptococcus pneumoniae, Streptococcus pyogenes, Staphylococcus aureus, Haemophilus influenzae, Mycobacterium tuberculosis* et plus rarement *Legionella pneumophila*.

Avant l'ensemencement, le crachat est lavé 3 fois consécutives avec du sérum physiologique stérile, ou est liquéfié avec une solution de N-acétyl-L-cystéine (la liquéfaction dure 30 minutes à température ambiante). On ensemence le crachat sur gélose-sang pour isoler *Streptococcus pneumoniae, Streptococcus pyogenes, Staphylococcus aureus*, sur gélose-sang-chocolat pour *Haemophilus influenzae* (incubation en aérobie avec 5-10% de CO₂) et sur milieu Löwenstein-Jensen pour *Mycobacterium tuberculosis* (les cultures sont incubées à 37°C et seront observées pendant deux à quatre semaines).

Sécrétions cervicales : Les germes le plus souvent isolés dans les infections cervicales sont *Neisseria gonorrhoeae, Candida albicans, Gardnerella vaginalis*. Les tampons récoltés sont ensemencés sur deux milieux gélose-sang et sur des milieux sélectifs (avec antibiotiques). Un milieu gélose-sang et un milieu sélectif sont incubés en aérobie avec ajout de 5-10% de CO₂, alors qu’un deuxième milieu gélose-sang est incubé en anaérobiose avec ajout de 10% de CO₂. On peut aussi utiliser le milieu gélose-sang-chocolat.

La plupart des souches se développent après 48h d'incubation. L'ensemencement se fait en milieu Sabouraud pour isoler *Candida albicans*. Quant à *Chlamydia trachomatis*, la souche est isolée par inoculation sur des cultures de cellules et dans une vésicule vitelline d'œuf embryonnaire.
9) Les méthodes d’identification des germes

Après l’isolation des bactéries en cultures pures, l’étape suivante du diagnostic bactériologique est l’identification, qui se fait seulement sur de jeunes cultures.

L’identification préliminaire des bactéries d’importance médicale se base sur les caractères suivants :

- Les caractères morpho-tinctoriaux sur frottis colorés à Gram.
- Les caractères culturels.
- Les caractères biochimiques et les tests de pathogénicité.
- Les réactions Antigène-Anticorps (Ag-Ac).

9.1) Les méthodes d’identification basées sur les caractéristiques morpho-tinctoriales des frottis colorés à Gram

Elles consistent à effectuer des frottis à partir de cultures et de reconnaître les bactéries grâce à leurs caractéristiques morphologiques (cocci, bacilles, coccobacilles, spirochètes) et tinctoriales (Gram positif/négatif). Cette étape d’identification est importante car les caractères culturels sont souvent non concluants (la forme, la dimension des colonies, la pigmentogenèse, les propriétés hémolytiques modifiées, particulièrement dans les produits biologiques provenant des patients sous traitement antibiotique).

9.2) Les méthodes d’identification basées sur les caractéristiques culturelles

Après l’incubation des cultures et l’identification sur base des caractères morpho-tinctoriaux, on regarde les caractères culturels.

- Les caractères culturels en milieux liquides : Leur valeur diagnostique n’existe que si ce sont des milieux sélectifs pour une espèce donnée et/ou s’ils indiquent un caractère biochimique évident par modification de leurs caractéristiques.
- Les caractères culturels sur milieux solides : On s’intéresse ici à la dimension des colonies, leur forme, les bords, le relief, l’opacité, l’aspect, la pigmentation, la consistance, le reflet, le type « S » ou « R », la modification du milieu.
Aspect des colonies à la surface du milieu de culture :

Gélose au sang
- Entérobactéries: Colonies rondes, blanches, opaques, lisses, diamètre compris entre 2 et 3 mm.
 - *Pseudomonas*: Colonies rondes, vertes avec un pigment métallique, lisses, plutôt transparentes, diamètre compris entre 1 et 3 mm.
 - *Staphylococcus*: Colonies rondes, blanches/orange, opaques, lisses, diamètre compris entre 1 et 2 mm
 - *Streptococcus*: Colonies fines, diamètre allant de 0,5 à 1 mm, d'aspect variable. Les colonies peuvent se détacher sur un fond verdâtre (*Streptococcus viridans*).
 - *Enterococcus*: Colonies rondes, blanches, lisses, diamètre allant de 0,5 à 1 mm.

Milieu Mac Conkey
Les germes **lactose-négatif** donnent des colonies incolores: *Proteus*, *Salmonella*, *Shigella*.

Milieu de CLED
- *E. coli*: Colonies lactose positif, jaune, opaque, centre légèrement plus foncé.
 - *Klebsiella*: Colonies lactose négatif, bleu, translucide.
 - *Salmonella*: Colonies lactose négatif, bleu, sans relief.
 - *Pseudomonas aeruginosa*: Colonies lactose négatif, surface mate typique.

Milieu Sabouraud
- Levures: Colonies avec un diamètre compris entre 1 et 2 mm, après 24 heures. De couleur blanche, elles sont mates, avec une odeur végétale (fruitée) après 48 heures.

Milieu Chapman
Le *Staphylococcus aureus* forme des colonies de 1 mm de diamètre, orange ou jaune-crème. En 48 heures elle atteignent 2 mm de diamètre et sont blanches ou pigmentées en jaune. Le changement de couleur, du rouge au jaune sur milieu solide Chapman signifie que les bactéries hydrolysent le mannitol (mannito-positive).

Gélose au sang avec VCN (vancomycine, colistine, nystatine)
- *Neisseria gonorrhoeae*: Après 24 heures d'incubation, la taille des colonies est variable (entre 1 et 3 mm) selon le type. Les colonies sont grises, translucides. Après 48 heures elles sont plus opaques.
 - *Neisseria meningitidis*: Après 24 heures d'incubation, les colonies sont nettement visibles (2mm), opaques, blanchâtres, parfois jaunâtres.
Des colonies muqueuses peuvent être rencontrées :
- *Haemophilus influenzae*: Après 24 heures d'incubation, les colonies sont grises, de 1 à 2 mm.

L’identification par les caractéristiques culturelles est souvent indicative et doit être confirmée par des tests plus précis.

9.3) Les méthodes d’identification basées sur les tests biochimiques et les tests de pathogénicité

- La sécrétion d’enzymes (coagulase, catalase, oxydase, lectinase) qui peuvent être détectées par des tests simples.
- La capacité de métaboliser les sucres, par mécanisme oxydatif ou fermentatif, est une des possibilités les plus utilisées pour identifier des bactéries.
La différence entre les bactéries **fermentatives** et **non fermentatives** c’est importante dans l’identification des bactéries à Gram négatif (entérobactéries qui fermentent le glucose, et les bactéries dites « non-fermentatives » qui ne le ferment pas).
- La production d’hydrogène sulfuré qui, en présence de certains métaux lourds dans le milieu, donne une couleur noire (*Salmonella, Proteus*, etc.).

Dans la pratique courante, on utilise des milieux multi-tests, comme par exemple, les galeries API, sur lesquelles on peut voir dans un même temps plusieurs réactions biochimiques.
Après l’inoculation manuelle, à partir de cultures bactériennes, les galeries, sont incubé 24 heures à 37°C.
On pourra ensuite lire et interpréter les résultats qui se présentent sous forme de code numérique, à comparer avec les références se trouvant dans un tableau fourni par le producteur, permettant l’identification des bactéries.

Plus récemment encore, on utilise des analyseurs automatisés et informatisés qui utilisent des cartes de réactions miniaturisées, la lecture automatique et une banque de données qui permet l’identification correcte des bactéries (analyseur Vitek, Microscan) ou spectromètre de masse MALDI-TOF.
9.4) Les méthodes d’identification basées sur les tests moléculaires

L’identification idéale serait l’identification se basant sur la structure de L’ADN bactérien, avec les tests de biologie moléculaire (PCR), mais pour l’instant, le prix étant très élevé, ces techniques ne rentrent pas dans la pratique courante, en laboratoire.
Il est parfois nécessaire de démontrer la présence des facteurs de pathogénicité des bactéries identifiées, pour confirmer le diagnostic clinique (par exemple la sécrétion de certaines toxines).

Les tests biochimiques ne donnent pas toujours une identification satisfaisante, le diagnostic étant complété par réaction immunologique antigène-anticorps (par agglutination, immunofluorescence, RIA, ELISA, etc.)
Ainsi, dans le cas de *Salmonella*, les tests biochimiques nous conduisent seulement à l’identification du genre.
L’identification du sérotype se fait en se basant sur la structure antigénique avec une agglutination du sérum (sur lame).
À la fin de cette étape on pourra identifier la bactérie au niveau du genre et de l’espèce, dans certains cas, au niveau du groupe et du type.
10) L’antibiogramme, technique et interprétation

Un antibiogramme est une technique de laboratoire visant à tester la sensibilité d'une souche bactérienne vis-à-vis d'un ou plusieurs antibiotiques supposés ou connus.

Le principe consiste à placer la culture de bactéries en présence des antibiotiques et à observer les conséquences sur le développement et la survie de celle-ci. On peut par exemple placer plusieurs pastilles imbibées d'antibiotiques sur une souche bactérienne déposée dans une boîte de Pétri.

Il existe trois types d'interprétation selon le diamètre du cercle de inhibition qui entoure le disque d'antibiotique: souche sensible (S), intermédiaire (I) ou résistante (R). La corrélation entre les diamètres des zones d'inhibition et la sensibilité du germe est faite par comparaison avec les données existantes dans les tableaux standard EUCAST ou CLSI.

Le choix d’un agent antimicrobien ne dépend pas exclusivement du résultat de l’antibiogramme, le problème étant plus complexe.

Il faut prendre en considération une série d’autres facteurs, comme sont: le site de l’infection, l’âge du patient, les affections intercurrentes, le statut immunologique, la fonction rénale et la fonction hépatique.

Le spectre antimicrobien d'un antibiotique représente toutes les espèces microbiennes avec toutes ou presque toutes les souches sensibles à cet antibiotique.

Finalement, l'antibiogramme est un outil validé par un microbiologiste médical qui permet au clinicien de choisir le bon antibiotique, ou l'association d'antibiotiques permettant de traiter efficacement un patient.

Le spectre naturel couvre toutes les espèces bactériennes sensibles à un antibiotique lorsqu’il est introduit en thérapie. Connaissance de ce spectre est particulièrement important dans les cas où il n’existe aucune possibilité de réaliser un antibiogramme, le médecin en exercice étant obligé de choisir un antibiotique auquel le germe est naturellement sensible.

Le spectre actuel est plus étroit que le spectre naturel et englobe les souches microbienennes sensibles à un certain antibiotique, à un certain moment, dans un certain domaine limité (collectivité), dépendant dans une large mesure des antibiotiques utilisés plus fréquemment dans ce pays, zone ou communauté. La restriction de ce spectre s'accentue de plus en plus car, au cours de l'introduction de l'antibiotique dans le traitement, de nouvelles souches résistantes apparaissent.
L’antibiotique de réserve est l'antibiotique à usage délibérément restreint, uniquement dans les infections bactériée grave, jusqu'au résultat de l'antibiogramme (dans les sections d'hôpital à risque) ou dans la situation de bactérie infectante est multi-résistante aux antibiotiques habituels (dans le cas de souches hospitalières). Le bactériologiste a pour tâche non seulement d’identifier et de tester la sensibilité des germes, mais est également impliqué dans l'activité du département des antibiotiques de l'hôpital, avec un rôle de supervision de traitement anti-infectieux.

10.1) Techniques d’antibiogrammes

L’antibiogramme s’obtient par mise en culture de germes étudiés in vitro, en conditions standard et en présence d’une quantité connue d’antibiotiques. Les antibiotiques, qui font partie d’une trousse avec laquelle on fait le test, sont sélectionnés en fonction du spectre naturel d’activité de la bactérie étudiée et de la localisation du foyer infectieux.

Dans les situations inhabituelles, si la vie du patient est en danger, on peut effectuer en parallèle un antibiogramme primaire direct sur le produit pathologique, pour pouvoir indiquer rapidement une chimiothérapie efficace (après l’antibiogramme effectué sur culture pure on peut, si nécessaire, corriger le traitement initial).

Du point de vue technique, il existe en principe deux possibilités pour tester l’activité antibactérienne : Méthode des dilutions et méthode diffusimétrique.

Comme témoins pour le contrôle des tests, on utilise des souches microbiennes de référence qui conservent une sensibilité naturelle aux antibiotiques (comme par exemple la souche S.aureus ATCC25293, quand on étudie les bactéries à Gram positif et E. coli ATCC25922 quand on étudie les bactéries à Gram négatif).

La méthode des dilutions : Elle a une utilisation plus restreinte et est utilisée surtout en recherche. Elle est rigoureuse du point de vue technique et nécessite une consommation de matériel qui dépasse les capacités d’un laboratoire clinique.

On réalise des dilutions croissantes d’antibiotiques dans un milieu liquide, qui se met en contact avec une quantité fixe de culture microbienne étudiée. On incube 18 heures à 37°C et on contrôle quelle est la plus petite concentration d’antibiotique qui inhibe la croissance des germes microbiens. On appelle cette concentration la concentration minimale inhibitrice (CMI).
La méthode diffusimétrique : Elle s’effectue sur milieu solide et c’est la technique la plus utilisée. On l’utilise surtout pour les bactéries à croissance rapide, elle permet d’étudier l’efficacité de plusieurs antibiotiques en même temps, mais le grade de corrélation avec la CMI n’est que de 70-90%.

Le principe consiste à ensemencer les souches à étudier sur la surface d’un milieu solide et appliquer des micro-comprimés d’antibiotiques sur la surface du milieu (ces derniers vont diffuser de proche en proche et leur concentration va diminuer avec l’augmentation de la distance). Les bactéries vont croître en « toile » sur la surface du milieu jusqu’à la zone où, au moment de leur multiplication, elles vont rencontrer l’antibiotique ayant une concentration correspondant à la CMI.

Après 18 heures d’incubation on peut apprécier la sensibilité des germes en fonction du diamètre de la zone d’inhibition entourant le micro-comprimé d’antibiotique. La lecture s’effectue en mesurant la zone d’inhibition.

Le test E : C’est une variante de l’antibiogramme sur milieu solide, qui permet d’établir précisément la CMI.

Sur la surface d’un milieu solide de culture gélifié et ensemencé de la même manière que pour la technique diffusimétrique, on applique une bandelette de papier filtre imprégnée d’antibiotique avec une concentration croissante.
L’une des extrémités de la bandelette correspond à la concentration minimale et l’autre à la concentration maximale. L’interprétation de la zone d’inhibition permet d’établir la CMI.
Il existe également des situations où cette méthode est la seule recommandée par le CLSI ou EUCAST, pour les tests de sensibilité, tels que:
- tester la sensibilité de staphylocoques au vancomycine,
- tester la sensibilité des pneumocoques au Ceftriaxon,
- tester la sensibilité des bacilles à Gram négatif à la colistine,
- tester la sensibilité des germes anaérobies.

Figure 17 : Test E en anaérobie sur gélose sang.
Phénotypes de résistance aux antibiotiques :

Le *Staphylococcus aureus* résistant à la méthicilline (SARM) est l'un des agents pathogènes les plus importants dans les infections nosocomiales. La résistance à la méthicilline implique une résistance aux bêta-lactamines (comprenant les céphalosporines de première générations, jusqu’aux céphalosporines de quatrième génération et carbapénèmes), mais pas aux céphalosporines de cinquième génération.

Un seul agent est utilisé pour détecter ce phénotype antimicrobien - Céfoxitine, qui est plus stable que la méthicilline en conditions de conservation, permettant une détection plus facile des espèces résistantes. Selon les normes CLSI et EUCAST, les résultats des tests à la Cefoxitine sont rapporté pour Oxacilline.

Chez les entérobactéries, ont été décrites en fonction de leur résistance naturel aux bêta-lactamines:
- Un phénotype sécréteur de pénicillinase, avec résistance aux pénicillines et +/- céphalosporines de génération I, II.
- Un phénotype sécréteur de céphalosporinase, avec résistance aux pénicillines et céphalosporines des génération I, II, III).
- Un phénotype sécréteur de bêta-lactamases à large spectre (BLSE), résistance aux pénicillines, céphalosporines des générations I à IV, mais étant sensibles aux carbapénèmes.
- Un phénotype producteur de carbapénémase, avec résistance aux carbapénèmes: imipénème, méropénème, étant sensibles aux antibiotiques de réserve, comme par exemple la colistine.
11.) Réactions antigène-anticorps

11.1) Réaction d’agglutination

La réaction d’agglutination est une réaction Ag-Ac très sensible dans laquelle l’antigène est corpusculaire (les bactéries, érythrocytes ou particules de latex sur lesquels se sont adsorbé les antigènes spécifiques). Les anticorps (les agglutinines) réagissent avec les antigènes de surface des particules et déterminent dans la phase suivante leur agglutination, en amas visibles à l’œil nu.

En fonction du complexe étudié, les réactions d’agglutination s’effectuent sur lame ou en tube.

11.2) Réaction avec des anticorps marqués

Les réactions avec anticorps marqués ont été introduites avec pour augmenter la sensibilité et la spécificité des réactions Ag-Ac. Les molécules d’anticorps peuvent être marquées avec des substances radioactives, fluorescentes ou enzymatiques.

L’immunofluorescence, découvert au milieu du XIXe siècle, est une méthode qui permet, grâce à la conjugaison d’anticorps avec une substance fluorescence, la mise en évidence par microscopie UV, des complexes Ag-Ac. La substance fluorescente la plus fréquemment utilisée est l’isothiocyanate de fluorescéine avec une fluorescence verte, suivie par la rhodamine B avec une fluorescence orange.

Il existe beaucoup d’autres techniques, mais toutes suivent ce principe, à savoir, la méthode sandwich.

La méthode d’immunofluorescence en sandwich est souvent utilisée pour mettre en évidence des anticorps antibactériens.

On applique, sur la préparation de bactéries à étudier, une solution qui contient l'antigène correspondant.

Une fois que celui-ci s'est uni avec l’anticorps, on recouvre la préparation avec d’autres anticorps fluorescents complémentaires des antigènes appliqués précédemment.
Les tests RIA et ELISA sont dérivés d'une technique qui se base sur le même principe, mais avec le test RIA, les antigènes sont marqués par radioactivité. A cause de la difficulté de la technique et des risques liés aux radiations, et grâce à une sensibilité meilleure pour le test ELISA, le test RIA a été remplacé par le test ELISA dans les laboratoires de microbiologie clinique.

La mise en évidence des antigènes avec RIA est basée sur le principe de compétition. Ainsi, sur un support solide, sont fixés les anticorps dirigés contre l'antigène que l'on veut mettre en évidence dans le sérum du patient. Si celui-ci contient l'antigène cherché, donc dans une réaction positive, il va se fixer sur l'anticorps correspondant sur le support. Après la réaction on ajoute l'antigène marqué radioactif qui ne trouvera plus de sites de fixation libres. La radioactivité va être très faible.

Dans le cas contraire, la réaction est négative, et les antigènes du sérum ne vont pas se fixer et les sites de combinaisons, mais vont rester libres pour l'antigène marqué radioactif. Dans cette situation la radioactivité sera grande.

Le Western Blot est la méthode de référence dans le diagnostic sérologique du SIDA grâce à sa sensibilité exceptionnelle. Elle combine l'électrophorèse et une réaction avec des anticorps marqués radioactifs, mais le plus souvent avec des anticorps fixés sur une enzyme.
Dans le principe on réalise la séparation des molécules de l'antigène infectieux sur un gel de polyacrylamide, en fonction de leurs dimensions. La séparation par électrophorèse est suivie par un électro-transfert sur un support solide de nitrocellulose. Celui-ci est incubé avec le sérum du patient.
Les anticorps vont réagir avec les fractions antigéniques spécifiques du support. Les complexes Ag-Ac formés sont mis en évidences par des anticorps marqués avec une enzyme (plus rarement radioactifs). Mais dans l'IF, ELISA, RIA et Western Blot, on n'utilise pas d'anticorps monoclonaux.

Dans le cadre d'une réponse immune normale, sont activés beaucoup de clones de lymphocyte B, qui produisent des anticorps avec des affinités plus ou moins grandes pour l'antigène respectif, si bien que dans le sérum on va trouver un mélange d'anticorps. Cet aspect s'explique par le fait qu'en général, les antigènes ont plusieurs épitopes.
Ainsi, si deux antigènes ont à la fois des épitopes spécifiques et des épitopes communs, ils vont induire la formation d'anticorps polyclonaux qui vont réagir avec les deux antigènes par les épitopes communs (réaction croisée). Pour prévenir les réactions croisées, on prépare des sérums mono-spécifiques par adsorption d'une partie des anticorps. L'absence de spécificité de ces sérums n'est satisfaisante, ni pour le diagnostic, ni pour la recherche.

Il est alors apparu la nécessité de préparer, en laboratoire, des anticorps avec une spécificité « parfaite » qui sont synthétisés à partir d'un seul clone de lymphocytes B.
Ce sont des anticorps monoclonaux, qui sont obtenus en laboratoire, par isolation dans le cadre d'une réponse immune polyclonale d'un seul lymphocyte B et son hybridation avec une cellule tumorale qui lui confère une «immortalité».

Les anticorps monoclonaux ont une grande valeur parce qu'ils reconnaissent un seul épitope, ils ne font pas de réactions croisées (sauf dans des cas exceptionnels quand les structures sont extrêmement apparentées). Beaucoup d'équipes de chercheurs se sont intéressées, ces dix dernières années, à la préparation d'anticorps monoclonaux antibactériens, antiviraux, antiparasitaires, dans un but diagnostique. Ces derniers sont moins utilisés là où la culture des microorganismes recherchés est difficile (syphilis, infection à Chlamydia, Toxoplasmas, virus divers...).

Les anticorps monoclonaux servent donc à la mise en évidence directe des germes dans les produits biologiques, ce qui raccourcit considérablement la durée du diagnostic, et du diagnostic sérologique.
12.) Méthodes de diagnostic rapides, en laboratoire de microbiologie

12.1) Méthodes basées sur l’identification des acides nucléiques

Les méthodes de diagnostic moléculaire sont applicables pour une gamme extrêmement large d’infections virales, mais aussi bactériennes, fongiques, etc.

À coté des nombreuses techniques immuno-enzymatiques qui détectent la présence d’anticorps spécifiques (diagnostic indirect), la biologie moléculaire offre la possibilité d’un diagnostic direct et l’identification de matériel génétique (ADN ou ARN) de l’agent pathogène.

PCR, le cycle de réaction résumé:

Il faut au préalable extraire les acides nucléiques du produit biologique, préparer le « mélange de réaction » contenant, entre autre, une polymérase, et ajouter des acides nucléiques permettant l’élongation des brins néoformés.

1- Dénaturation à 94°C de l’ADN qui se sépare en deux brins d’ADN monocaténaire.

2- Étape de recuisson, on reconstitue des portions d’ADN bi-caténaire grâce à la complémentarité des bases azotées (entre 54 et 64°C).

3- Extension, à peu près à 72°C, la polymérisation, dans le mélange de réaction, catalyse la synthèse de deux nouveaux brins d’ADN à partir des premiers appariements des deux brins initiaux d’ADN, qui se sont séparés lors de la dénaturation.

Par la répétition de 30-40 cycles on obtient une amplification exponentielle, avec l’apparition de millions de copies d’acides nucléiques à partir de l’étape initiale.
Figure 19 : Schéma du principe de la PCR.

La PCR est utilisée de plus en plus souvent dans le domaine des sciences biologiques et médicales.

Elle représente une méthode de diagnostic précise et extrêmement sensible qui peut mettre en évidence de très petites quantités d’ADN infectieux bactérien, viral ou parasitaire.
Bibliographie

17. Lorian V. Antibiotics in laboratory medicine. Lippincott Williams &Wilkins, 2005
31. Licker M, Dragomirescu L, Moldovan R. Microbiologie clinique, cours a l’usage interne pour les etudiantes de la Faculte de Medicine, Timisoara 2013
32. Licker M, Moldovan R, Popa M, Axente C, Pilut C. Microbiologie clinique, la partie speciale, cours a l’usage interne pour les etudiantes de la Faculte de Medicine, Timisoara 2014