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ABSTRACT 
 

 

GENERAL PART 
 

Pulmonary interstitial pathology presents a particularly complex problem caused by 

the diversity of pathological entities that make up this group. Although these entities have 

low individual prevalence and are considered rare diseases, they represent an essential part 

of pulmonary medicine practice; above 200 disorders can lead to interstitial lung injury, often 

with similar presentations, presenting difficulties in diagnosis and treatment, often requiring a 

multi-disciplinary approach to the case. The difficulty of diagnosing them can arise primarily 

in the imaging domain - a central analysis element. The broad spectrum of imaging patterns 

and the presence of a similar appearance of different types of tissue or, conversely, imaging 

variations of the same type of tissue/lesion create diagnostic variability among specialists in 

the field. This variability can lead, together with the rarity of cases and the difficulty of 

specifying a diagnosis, to grave confusion in classifying a patient in a disease pattern even 

after multi-disciplinary discussion sessions between medical specialists. 

Because of both case management and treatment response variability, the gold for 

the pulmonologist is to identify the distinguished diffuse interstitial lung diseases (DILD) 

forms in the early stages as possible, without an invasive procedure such as a lung biopsy. 

Within this framework, high-resolution computed tomography (HRCT) remains the 

predominant method for ILD diagnosing due to lung tissue-specific radiation attenuation 

properties and maximum spatial resolution. 

Idiopathic pulmonary fibrosis (IPF) is the most often encountered diffuse interstitial 

lung disease (DILD), a progressive fibrosing interstitial lung disease (PF-ILD), with a 

characteristically poor outcome and an amplified early death risk without treatment. There is 

particular interest in the pulmonology community for this pathology and, more recently, for all 

DILD with progressive fibrotic character. 

In the last decade, substantial progress has been made in understanding pathogenic 

mechanisms, defining diagnostic criteria, and developing effective medication for treating DILDs. 

Computer-aided diagnosis (CAD) is often employed in DILD management during the diagnosis 

and treatment phases. However, CAD has several facets that need careful consideration: 

selecting the proper technique for the medical needs and conveying the answers in a manner 

accessible to persons without an information technology (IT) background. More than a few 

approaches to CAD for lung HRCTs are available or in development based on different 

techniques. Whether built on artificial intelligence, neural networks, or machine learning, these 

software applications fail to capture the dynamics of a pathology evolution. Therefore a math-

based method of CAD image visualization could be the answer. 



 

6 

RESEARCH PART 

 

CHAPTER 1: FACILITIES AND PITFALLS FOR USING CAD FOR 

DILD DIAGNOSIS 

 
1.1 1.1. DEEP LEARNING IN INTERSTITIAL LUNG DISEASE-HOW LONG UNTIL 

THE DAILY PRACTICE 

 

The artificial intelligence (AI) component‘s virtual subclass is machine learning 

comprising mathematical algorithms computer systems use to learn a specific task through 

experiences without specific human instructions. Deep learning (DL) is advanced, consisting 

of a multi-layer representation learning architecture. The representation activates the first 

layer of neurons through a sensor, which, in turn, activates the next layer by complex 

connections. Each layer processes the representation in a non-linear way, creating an 

increasingly complex schema, diverging from the general machine learning task-specific 

algorithm. DL‘smajor advantage is that it can improve autonomously, without human input. 

From a usage standpoint, it can perform arbitrary parallel computation more efficiently than 

other algorithms. DL is used in visual object recognition, speech recognition, driving 

assistance, and language classification, among others. Complex neuronal networks (CNN) is 

an AI technique, the engine on which the DL runs.  

Typical DILD patterns in HRCT images are reticulation (RE), honeycombing (HC), 

ground-glass opacity (GGO), consolidation (CD), micro-nodules (MN), emphysema (EM), or 

combinations of the above. The difficulty appears when the results are combined or 

inconclusive. 

CNN‘s accuracy needs large image samples because normal lung or tissue categories 

could exhibit similar appearances, and significant variations might be seen between different 

subjects for the same tissue class. Thus, CNN‘s require large, balanced datasets and 

advanced algorithms, reflecting processing power and storage capacity requirements. A 

combination of multiple CNN can be the answer to reducing the costs spent on the social 

and healthcare aspects. 

 

1.2. COMPUTER AIDED TEHNICS 

The CAD algorithms are part of artificial intelligence (AI) since they imitate human 

thought. CAD can be broken down into two categories: learning and discovery. Both can be 

carried out under supervision or independently; nevertheless, the results of computer 

techniques are primarily data-based.  
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If we are looking to implement a diagnosis model that recognizes existing patterns, 

learning algorithms are a natural choice because the algorithms learn from the offered data. 

However, if a new diagnosis parameter is sought, the discovery section provides the 

algorithms. Reasoning algorithms are used when we need a consensus between inputs and 

rules, sometimes allowing for uncertainty or using statistical inferences. Therefore, these 

algorithms help implement a diagnosis or treatment algorithm consisting of clear rules that 

quantify the inputs. 

As their name suggests, supervised machine learning consists of training a model 

by feeding it a set of input data together with the expected corresponding output values 

(which are known beforehand). The algorithm then generates a suitable model (formula) 

which fits the input data and can be used for the analyzing new input data 

Two of the most common supervised learning purposes are linear regression and 

classification. With unsupervised machine learning, no training set tells the algorithm how it 

should generate results; instead, the algorithm is responsible for finding common 

denominators among data. They are mainly used for clustering purposes, anomaly 

detection, and neural networks. Some of the most popular unsupervised ML algorithms are 

K-means clustering, hierarchical clustering, DBSCAN clustering, and the hidden Markov 

model. Reinforcement learning (RL) algorithms are based on a trial-and-error approach. The 

learner is not told what to do but instead learns what good and bad actions are based on the 

rewards or penalties it gets according to its actions. Thus, it will always choose the moves 

which allow it to maximize the rewards. 

These types of algorithms can be used in medical diagnosis in combination with 

medical imaging in cases where doctors might be dealing with a prolonged therapy process. 

Reinforcement learning algorithms have multiple applicability directions, such as DILD, 

dynamic treatment regimes, automated medical diagnosis, or more general domains. 

With the aid of information technology (IT) procedures, CAD allows medical 

professionals to comprehend and employ distinct imagistic investigations. The objective is to 

increase the speed and accuracy of diagnosis, with IT as a supplement or even an 

independent diagnostic alternative.   

 

CHAPTER 2: A NOVEL METHOD FOR LUNG IMAGE PROCESSING 
USING COMPLEX NETWORKS 

2.1. MATERIALS AND METHODS 

2.1.1. Lot Selection 

To choose the eligible patients, we used ‗Dr. Victor Babes‘ Infectious Diseases and 

Pneumoftiziology Clinical Hospital Timisoara database, stored in their private cloud archive. 

From more than 30000 imaging exams stored in Digital Imaging and Communications in 
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Medicine (DICOM) format, a total of 60 scans were selected based on the following inclusion 

criteria: 

- 30 patients with CT exams and exploratory function tests with the diagnosis of DILD 

(diffuse interstitial lung disease); 

- 30 patients with normal CT imaging were considered the control group. 

 

2.1.2. Imaging Parameters 

All examinations were performed with a General Electric (GE) Healthcare Optima 

520 16 slices with 32 slices reconstruction. The scanner is a 0.5 mm × 16 detector row, 

allowing for an 8 mm total z-axis length. The slice is narrower than the recommended 1.5 

mm by the Radiology Working Group of the Pulmonary Fibrosis Foundation to allow for 

better and smoother lesion detection and higher accuracy—both crucial aspects of DILD 

diagnosis. The spatial resolution (pixel spacing) for these settings is 0.74 mm. 

The main criteria for analyzing image data were the tissue densities/opacities, which 

were determined by applying the Hounsfield scale‘s principles. The Hounsfield units (HU) 

are commonly used for quantitative analysis of radio density and tissue tightness, which help 

interpret CT scans. Image reconstruction relies on the tissue properties regarding X-ray 

beam penetration and attenuation to define a grayscale image system. These grayscale 

intervals vary between approximately −1000 HU (air) and 3000 HU (metals like silver and 

steel), according to the attenuation range of tissue absorption. A gray tone scale represents 

this transformation with the density of distilled water as a landmark, defined as zero HU. 

According to the HU intervals, each element of this lesional picture will have an equivalent.  

 

2.1.3. Image Processing Algorithm 

Each sample manually selected is then processed with the help of a Python-written 

program developed specifically for this purpose. Using a specialized CT library, pydicom, the 

DICOM slices are cropped to the pre-established size (65 × 65 pixels) around the interest 

area. 

The program consists of an algorithm meant to carry out the following steps: 

1. Iterate over a set of HRCT slices (DICOM files); 

2. For each one, crop out a 65 × 65 pixel area; 

3. Analyze the selected area from 3 perspectives: 

 Convert pixel gradient into a Hounsfield unit value according to the formula: 

     HUv = rescaleSlope * PxGradient + rescaleIntercept, 

 Where rescale slope and rescaleIntercept are constant values dependent on the 

CT equipment and embedded in the DICOM metadata, and PxGradient is the 

color code of a pixel; 
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 Isolate all emphysema-like tissue(E-considered to be equivalent to cyst by HU ), 

GGO (Ground Glass Opacity), and consolidation densities( C-equivalent with 

reticulation) in the cropped image and leave out any other types of tissue; 

 Separate each HU strip in the sample into a separate layer(E, GGO, C). 

4. Generate complex networks out of each layer; 

5. Analyze connectivity, closeness, and distribution of nodes (pixels); 

6. Determine patterns of normal lungs and affected lungs. 

 

2.2. RESULTS 

Following the previously described method, all HRCTs (of both normal and affected 

lungs) were processed. Each individual steps are done for a single normal and DILD-

affected patient. 

 

2.2.1. Normal and DILD Case Sample Results 

The first step is sample cropping into 65 × 65 pixels. The following steps imply 

splitting everything into layers and converting those layers into complex networks. First, the 

emphysema layer is examined. Next is the ground glass layer, where significant differences 

occur. Even though a visual inspection might evaluate the distributions as random, the 

network degree distribution shows an entirely different story: a logarithmic distribution for the 

normal process and a polynomial one for the IPF. The least was the consolidation layer. 

The differences can be pretty distinctive at an individual level, and the entire image 

lot analysis presented the challenge of determining network metric relevance in a broader 

context. In order to measure the network invariant entropy, a metric based on degree 

sequences is usually preferred. However, the differences shown present the challenge of 

adding a measurement for the network size. Three metrics were selected due to their 

balance between metrics that measure network complexity and size: total count (the degree 

sum), average count (average degree), and maximum degree. 

 

2.3. DISCUTION 

The complex-network model based on HRCT lung imaging needs to be assessed as 

to how well that model fits known frameworks from network system science and medical 

science.  

 

2.3.1. Network System Science 

Results showcase a logarithmic distribution at the proper biological resolution (Rd = 

4) for normal patients. Pathological lungs have an entirely different distribution, best fitted 

with a polynomial function, not a logarithmic one. The fit of various logarithmic and power 
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distributions was tested against relative distances between lung entities. Values less than 3 

show a relatively similar fit, which is mathematically correct yet biologically incorrect because 

1- and 2-pixel separation translate to a 0.74 mm to 1.48 mm gap, too small to be relevant. 

The differences between the DILD-affected and normal networks are distinctive and 

can be further quantified if a simple standard deviation for all patient data series is 

computed. The results on all three measurements considered for the networks (maximum 

degree, total count, and average degree) for each HU band and the combined pathological 

HU bands prove a clear separation between the pathological and normal networks. 

 

2.3.2. Medical Science 

From a statistical perspective, comparing normal lungs with diseased lungs is 

challenging due to different DILD phenotypes and the relatively small lot size/disease class. 

To prove the method and model work overall, a t-test: two-sample assuming unequal 

variances was conducted, comparing normal to DILD samples. The results show that 

measured p is less than 0.05 (3.97 × 10−17,8.52 × 10−23, and 5.31 × 10−9) and observed t 

(10.49, 14.91, and 6.29) is more significant than critical t (1.98, 1.99, and 1.98), therefore 

rejecting the null hypothesis; i.e., being 95% confident that the differences between groups 

are not due to chance. 

 

2.4. CONCLUSION 

In this paper, a novel method of using complex networks to transform lung HRCT has 

been presented. The methodology section delves deeper into the algorithm steps and the 

justification of each chosen parameter. The sample size is justified by the anatomical bounds 

of the secondary pulmonary lobule; the radius influencing network connectivity is correlated 

with injury granularity, and the Hounsfield unit intervals depend upon the device and 

resolution. The results section presents in parallel the processing steps for two sample 

patients (a normal and a pathological one) and a whole-lot perspective. In the discussion 

section, the correctness of this model is justified from a system science perspective by using 

the degree distributions as the main system characterization tool. 

Furthermore, the network measurement clusterization is described, showing that it 

results in evident disparities between the normal and pathological lots. From a medical 

science perspective, it is showcased how the chosen model reflects clinical data and how its 

low granularity presents an advantage in the diagnosis process. In the end, comparing this 

method with existing ones highlights its advantage: it offers a complex qualitative and 

quantitative measurement. Pitfalls of the proposed model include its inability to work alone 

yet and the relatively small lot on which it was tested, which will all need to be addressed in 

further research. In conclusion, the stated goal is considered to have been achieved by 
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showing how a complex network model can be used to transmute lung HRCT into a 

quantifiable and qualifiable structure that can enhance the DILD diagnosis. 

 

CHAPTER 3: ENHANCING IMAGISTIC INTERSTITIAL LUNG 
DISEASE DIAGNOSIS BY USING COMPLEX NETWORKS 

3.1. MATERIALS AND METHODS 

3.1.1. Lot Selection 

From the private ―Dr. Victor Babes,‖ Infectious Diseases and Pneumoftiziology 

Clinical Hospital Timisoara National Fibrosis Center database were selected 65 DILD 

patients with multiple scans and 31 normal lung patients. Inclusion and exclusion criteria 

were established and respected. For each patient‘s physiological data (age, sex, smoking 

status), pulmonary function tests (PFT)–like forced vital capacity (FVC) by spirometry 

performed and diffusing capacity of the lungs for DLco together with HRCT annotations were 

investigated. Patients‘ quantitative dynamic HRCT images were also provided, and four 

pneumology specialists reviewed their case history. 

The selected primary lesions were reticulation and consolidation (defined together as 

band C), ground glass opacity (band GGO) as well as emphysema, and cysts (defined 

together as band E). These lesions have precise imagistic absorption rates that permit 

grouping. 

The HRCT region of interest was marked by a radiologist with high experience in the 

imagistic diagnosing of DILDs (10+ years), who collaborated with the other specialists‘ 

inputs. The selected imagistic elements were typical for IPF (29 patient—44.62%), NISIP (16 

patients— 24.62%), OP (8 patients—12.3%), S (8 patients—12.3%) and HP (4 patients—

6.15%).  

From the DICOM format, three complex networks were generated for each selected 

region of interest, one for each pathologically relevant Hounsfield unit (HU) interval: E for 

emphysema and cysts, GGO for ground glass opacity, and C for consolidation and 

reticulations. The HU transformation scale is device-specific and based on this 

implementation. 

 

3.1.2.Selecting relative measurements 

A CN can be characterized by many metrics and should reflect the underlying 

biological processes and their dynamic evolution. Since the underlying purpose of this paper 

can be biologically translated into a way to measure lesions and their expansion. Therefore, 

the selected measurements to reflect interconnectedness and size are maximum degree 

number (the number of the maximum connection in the network for a singular node), total 

degree count (how many connections are in the network), and average degree count (the 
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average number of connections per node–how sparse the network is). A network node can 

represent either a singular pixel. 

 

3.1.3. Results 

3.1.3.1. Case Reports 

This section presents sample locations from two very different patients put through 

the analysis process(UIP+ emphysema and NSIP). A patient classified as a typical UIP 

following a heated discussion among our fibrosis center specialists presents an untypical 

honeycombing pattern, which may skew the diagnosis towards probable UIP. However, age 

and sex leaned heavily toward the final diagnosis. Therefore, this case and an NSIP pattern 

were tested to detect the capability of the studied algorithm.  

 

3.1.3.2. Progression Speed 

The defined relative speed on each HU band and each CN parameter was analyzed 

with a t-test versus DLco relative variation. The lot on which this test was performed is the 

entire lot, normal and DILD patients. It should be noted that, while the maximum degree can 

also be analyzed since the measurement searched for is progression, peak singular lesion is 

less relevant. The null hypothesis is retained for all but one of the selected series. The E 

band‘s average count VS DLco test rejects the null hypothesis. 

 

3.1.3.3. Testing for Early Detection 

To search for early detection, the lot was grouped into cases considered normal and 

cases with incipient DILD and fairly good functional parameters (GAP-ILD 0–3 points, DLco 

values between 70 and 85%). The DLco values were chosen as an interval centered on 

the lower normal limit (80%) to allow the inclusion of early impairment in alveolar-capillary 

membrane. The cases were analyzed on the same three axis 

 

3.1.4. Discussion 
Two levels of axial HRCT slices (superior and basal lung region) are presented, 

selected to showcase debatable UIP pattern+ emphysema (CPFE phenotype) imagistic 

progression. Imagistic interpretation for the progression starts with the initial t0 point, which, 

in the superior lung region, indicates fine reticulation presence, bullous emphysema, and 

slight subpleural honeycombing cysts; the basal region is marked with sparse reticulation 

and honeycombing lesions. 

According to the HU ranges, reticulations and consolidations have similar values, yet 

in this specific context, the values are interpreted as reticulations. The CN model offers data 

for relative variation speed on each layer in the selected areas. This speed is specific to a 
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selected site and reflects a relative variation in characteristics over a time period. It is not an 

absolute value; its meaning is related to the swiftness of change, highlighting rapidly 

deteriorating areas. Since the algorithm behind the CN conversion considers lesions as 

small as 3 mm, by default, the speed is more granular than the human eye. 

The CN model‘s relative speed on the E layer presents an increase in follow-up in the year 1 

and year 2, yet the magnitude between the superior and basal slices is very different. The 

superior region is almost 10 times faster deteriorating than the basal slice, quantifying the 

superior lobe‘s emphysema lesion extension and honeycombing cyst layers increase 

compared with the basal lobe in which emphysema is not very well. C layer increases on the 

superior and basal slices, presenting the pathological process of lesion progression with lung 

architectural distortion, reticulation, and multi-layer variate size cyst. The model detects 

minor variations in the GGO, especially in the basal plane, suggesting a probable acute 

substrate in that area. This image is highly annotated by lung experts, with GGO difference 

imperceptible. Studying the patient‘s data, the symptoms from follow-up year 1 are 

inexplicably slightly exacerbated, yet they are not so in follow-up year 2. This confirms the 

CN relative speed light variation and its ability for early detection. Functional parameter 

relative variation is almost zero in both follow-up years, defining a stationary functional 

status, underling the early detection of the proposed CN model. 

Then, the imagistic axial lung HRCT lesion evolution in an NSIP pattern case is 

evaluated. On the E band, relative speed expresses a marked increase in the emphysema 

focus points numbers (total count), with only a medium increase in their intensity (average), 

for both sample sites, clearly explained by the buildup in honeycombing cysts layers. GGO in 

t0 shows a slight increase in the follow-up sample, corresponding with the imaging slice 

HRCT interpretation. The C layer displays only on superior regions a slight increase, 

reflected by the well-defined multi-layer cysts and their defining walls. Functional parameters 

have almost no variation underlying the premature detection of the proposed CN model. 

 Screening the entire lot, results support the state that the CN algorithm accurately 

and quantitatively characterizes DILD progression. The fact that most of the statistical 

comparisons between DLco and CN measurements variation show relevant similarities. The 

only exception is comparing the average count and DLco on the E band. Some patients 

classified as normal have chronic obstructive lung pathology in a clinical compensation 

status and/or are active or former smokers. Since the CN measurements reflect biological 

terms, the number of the E-layer regions of interest is the same, but the regions‘ median 

intensity is statistically relevant and higher than its corresponding functional parameter 

variance. 

The statistical testing between the borderline and normal groups warrants further 

exploration. On the E layer, there is no statistical difference between the early diagnostic and 
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normal sets; therefore, the CN model does not allow early detection on this layer. From a 

biological perspective, early DILD diagnosis with emphysema phenotype is almost identical 

to smokers‘ emphysema lesions, as confirmed by the results. On the GGO layer, there is a 

statistical difference, the null hypothesis is rejected, and the proposed model is successful in 

early DILD detection. On the C band, the maximum degree and total count detect early 

DILD, yet the average count does not. Pathologically, the proposed model accurately detects 

well-defined consolidation lesions and does not successfully differentiate diffuse early 

consolidations with blurred edges in their early stages. Consequently, the hypothesis that the 

CN algorithm allows early detection is accurate on the GGO, primarily true on the C layer 

and false on the E layer. 

Previous CAD approaches, like the ones that implement simple mathematical based 

techniques in one or more dimensions or more complex machine and deep learning 

algorithms, do not provide a way to objectively assess the aggressive aspect of a lung 

disease that can serve as an indicator for the commencement of the antifibrotic protocol. The 

proposed speed measurement does not assess the disease severity, yet it assesses its 

aggressive aspect. For example, a simple <insert disease here> in its early stages can 

progress rapidly, and the measured speed is high. In this paper, the superior region, 

although it has a less severe aspect, deteriorates faster, which is quantified by the speed 

measurement. A more severe aspect can be pretty stationary, a sign that there is another 

factor to be considered (the medication is working, the phenotype is slowly progressive, the 

disease is remissive, or it shifted towards other areas). 

 

3.1.5. Conclusions 

To successfully deal with DILDs, two issues need to be solved, well known by all the 

practicians: early detection and accurate progression evaluation. So far, the traditional 

medical and computer-based approaches based on artificial intelligence, machine learning, 

etc., have come up short even though some diseases, such as IPF, critically need efficient 

solutions. This paper aimed to explore whether a CN-based computer-aided diagnosis can 

successfully provide the required data to manage DILDs. 

In order to do so, two hypotheses were tested: the first one explored progression, 

and the second one was early detection. For progression, the CN CAD was an almost 

complete success. Its fine accuracy in testing lesions as small as 3 mm, allowed correlation 

with the clinical status beyond the granularity of standard functional tests. The only problem 

was on the E band for the average count measurement type, yet the other five measurement 

axis easily offsets this. 

For early detection, the inflammation GGO layer proved to be key. Inflammation and 

fibrosis are the two typical DILD states, and the CN algorithm performed well on both GGO 
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and C-defined HU bands. This showcases the practical abilities of this algorithm type, 

particularly well-suited to DILDs, not filled so far by any other tools, such as, for example, 

Caliper. 

As pitfalls, the CN algorithm has a considerable run-time, growing exponentially 

proportional to the analyzed window. It also needs prior lung segmentation, which can be 

obtained through other CAD or manually. In conclusion, this algorithm should be 

incorporated in a much larger CAD, combining the faster machine learning segmentation 

and pattern detection capabilities with the slower yet accurate CN local analysis. 

 


