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PREFACE

This monograph presents a comprehensive investigation into applying
computer-aided diagnosis (CAD) techniques for imaging interstitial lung
diseases (ILD). The research focuses on leveraging complex network analysis
methods to enhance the early detection and monitoring of ILD patterns in high-
resolution computed tomography (HRCT) scans.

The work begins with a critical analysis of the existing literature,
highlighting the potential and the challenges associated with using CAD for DILD
diagnosis. It then delves into developing novel algorithms integrating visual-
based complex network approaches to analyze HRCT images. The monograph
explores the correlation between DILD functional and imaging characteristics
and the application of these visualization-based techniques. A vital aspect of the
research is the provision of early detection and progression monitoring of DILD-
related HRCT lesions using computer-aided methods. This presents a detailed
examination of the specific HRCT findings in idiopathic pulmonary fibrosis (IPF),
which serves as the reference disorder for pulmonary fibrosis.

This treatise's findings contribute to advancing ILD management and
imaging diagnosis, offering valuable insights for clinicians and researchers in the
field. The integration of complex network analysis with HRCT imaging holds
promise for enhancing the early identification and monitoring of these complex
lung diseases. The book is structured into several chapters, beginning with an
introduction to ILD and the role of HRCT imaging in their diagnosis. It then
provides an overview of the current CAD techniques for ILD, highlighting the
potential and challenges of deep learning approaches. The core of the research
is presented in the subsequent chapters, detailing the development and
evaluation of novel complex network-based algorithms for ILD detection and
monitoring.

Throughout the treatise, the author has made significant efforts to bridge
the gap between the technical aspects of CAD and the clinical needs of ILD
management. The work is further enriched by including detailed case studies
and comparative analyses with established diagnostic methods. The preface
concludes by emphasizing the potential impact of this research on the field of
ILD imaging diagnosis and the author's hope that the findings will contribute to
the improved care and management of patients suffering from these complex
lung diseases.



Xl

INTRODUCTION

1. THE MOTIVATION FOR CHOOSING THIS RESEARCH
TOPIC

Pulmonary interstitial pathology presents a particularly complex problem
caused by the diversity of pathological entities that make up this group. Although
these entities have low individual prevalence and are considered rare diseases,
they represent an essential part of pulmonary medicine practice; above 200
disorders can lead to interstitial lung injury, often with similar presentations,
presenting difficulties in diagnosis and treatment, frequently requiring a multi-
disciplinary approach to the case. The difficulty of diagnosing them can arise
primarily in the imaging domain - a central analysis element. The broad spectrum
of imaging patterns and the presence of a similar appearance of different types
of tissue or, conversely, imaging variations of the same type of tissue/lesion
create diagnostic variability among specialists in the field. This variability can
lead to rare cases, difficulty specifying a diagnosis, and grave confusion in
classifying a patient according to a disease pattern, even after multi-disciplinary
discussion sessions between medical specialists.

Idiopathic pulmonary fibrosis (IPF) is the most often encountered diffuse
interstitial lung disease (ILD), a progressive fibrosing interstitial lung disease
(PF-ILD), with a characteristically poor outcome and an amplified early death
risk without treatment. There is particular interest in the pulmonology community
for this pathology and, more recently, for all ILD with progressive fibrotic
character.

In the last decade, substantial progress has been made in understanding
pathogenic mechanisms, defining diagnostic criteria, and developing effective
medication for treating ILDs. Computer-aided diagnosis (CAD) is often employed
in ILD management during the diagnosis and treatment phases. However, CAD
has several facets that need careful consideration: selecting the proper
technique for the medical needs and conveying the answers in a manner
accessible to persons without an information technology (IT) background.

The motivation for choosing this research theme - computer-aided HRCT
imaging diagnosis of ILD- resulted from further exploring this patient population
group of interstitial pathology, which remains underdiagnosed. The multi-
disciplinary approach with colleagues from the IT department emerged as a
necessity in the age of digitization and technology.

Thus, this research paper aims to bring new visions of imaging
evaluation in interstitial lung pathology based on analytical methods CAD,
increasing accuracy in assessment and diagnosis.
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2. THE IMPORTANCE AND TOPICALITY OF THE THEME

Diffuse interstitial lung pathology, a diverse group of diseases that
manifest common clinical, functional, imaging, and pathological aspects, has
consistently raised problems of classification and definition due to the
nosological diversity, variable terminology, and imprecise diagnostic criteria.

In recent decades, significant progress has been made in
understanding pathogenic mechanisms and diagnostic methods. Although
the diagnosis of ILDs was revolutionized by the introduction of high-resolution
computed tomography (HRCT) and the precise definition of histological
criteria specific to each entity, currently, there is no gold standard diagnostic
test. In most cases, the diagnosis represents an intellectual challenge for
clinicians, radiologists, and pathologists, and the solution can be found in the
multi-disciplinary approach of the patients.

Because of case management and treatment response variability, the
gold for the pulmonologist is to identify the distinguished ILD forms in the
early stages without an invasive procedure such as a lung biopsy. Within this
framework, high-resolution computed tomography (HRCT) remains the
predominant method for diagnosing ILD due to lung tissue-specific radiation
attenuation properties and maximum spatial resolution.

More than a few approaches to computer-aided diagnosis (CAD) for
lung HRCTs are available or developed based on different techniques.
Whether built on artificial intelligence, neural networks, or machine learning,
these software applications fail to capture the dynamics of a pathology
evolution. Therefore, a math-based method of CAD image visualization could
be the answer.

The acceptance of antifibrotic therapies for IPF has led to the
investigating of such treatments in other fibrotic lung diseases. Today, more
than ever, when the beneficial effect of antifibrotic medication in interstitial
lung diseases (ILDs) other than IPF manifesting progressive pulmonary
fibrosis has been embraced, an early accurate diagnosis of ILD and
quantification of fibrosis progression is vital.
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3. FRAMING THE TOPIC IN THE INTERNATIONAL,
NATIONAL, AND ZONAL CONCERNS OF THE RESEARCH
GROUP

The Pneumology Department of the "Dr. Victor Babes" Clinical Hospital
for Infectious Diseases and Pneumophthisiology Timigoara is a national center
of expertise for diffuse interstitial lung diseases, most patients being referred by
the pneumology community from the western region of the country. Starting in
January 2010, patients with ILD were recorded based on a register of diffuse
interstitial pneumopathy, where all patients who consented to the registration
were entered, creating a viable research database. The medical team managing
ILD cases actively participates in the National Registry of Diffuse Interstitial
Pneumopathy and Sarcoidosis (REGIS). This project is carried out in
collaboration with the "Marius Nasta" Institute of Pneumophisiology, supported
by the working group for diffuse interstitial pneumopathy and sarcoidosis within
the Romanian Society of Pneumology. The objectives of this initiative are the
creation of a national registry of patients suffering from diffuse interstitial
pneumopathy and sarcoidosis for clinical research, improvement of the early
identification and diagnosis of patients with ILD and sarcoidosis, unification of
the diagnostic criteria and the terminology used to describe the cases; creation
of an educational platform for resident doctors and specialists, pulmonologists
but also rheumatologists or other specialties, improving the care of patients with
diffuse interstitial pneumopathy and sarcoidosis, popularizing information
related to these diseases among patients.

4. THE SCIENTIFIC OBJECTIVES TO BE SOLVED WITHIN
THE DOCTORAL RESEARCH

The objectives proposed in the present research paper were:

1. Critical analysis of data from the specialized literature with an
emphasis on facilities and pitfalls for using CAD for ILD diagnosis.

2. Creating valid algorithms for the specific field of ILD management and
imagistic diagnostic, emphasizing visual-based complex network methods. The
application of CAD systems in the imaging diagnosis of ILD requires submission
to the rules of medicine and the science of systems for algorithm validation.

3. Analysis of ILD functional and Imaging HRCT facets and correlation
with visualization-based complex network methods.

4. Providing early detection and progression of the imagistic HRCT
lesions computer-aided.
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5. BRIEF PRESENTATION OF THE WORK'S CONTENT

The present paper describes the general framework of diffuse interstitial
pneumopathy (PID) in the first section, including the classification system related
to the incidence, imaging patterns, and interconnections with computer-aided
techniques. The description of idiopathic pulmonary fibrosis (IPF) and the
diagnostic algorithm for this interstitial entity is slightly detailed.

The special part analyses computer-aided HRCT imaging diagnosis's
impact on the ILD patient population. Later, a proposed complex networks (CN)
model was tested on HRCT scans of normal and ILD patients, establishing
quantifiable differences between healthy and affected lungs. The last part of the
research paper goes deeper into imaging-aided diagnosis. It quantifies ILD
scans' progression and early detection. The groups of patients were selected
from the ILD database of the Pneumology Clinic of the "Dr. Victor Babes" Clinical
Hospital for Infectious Diseases and Pneumophthisiology, Timisoara, during
January 2010 - 2022.

6. SYNTHETIC COMMENTS REGARDING THE RESEARCH
METHODOLOGY AND THE MAIN RESULTS

This retrospective, longitudinal, observational, and comparative study
aimed to evaluate the degree of accuracy that the application of complex
networks(CN) can additionally provide to diagnose HRCT imaging to obtain an
early-stage diagnosis and issue disease progress scores within diffuse
interstitial lung pathology. Complex networks (CN), based on the graphical
representation of interactions, were used to generate a 3D model of lung
imaging contrasts (based on gray tones scale, using Hounsfield units),
practically refining the visualization with a mathematical-analytical model. Based
on the intrinsic mathematical properties of CN, we sought to determine typical
features of healthy and fibrotic lungs. The underlying nature of the degree
distribution reflects the intrinsic characteristic of CN; therefore, proliferative or
physiological processes have different forms of variation. As a result of this
postulate, the pathological processes described by the polynomial distribution
can be quantified and/or qualified using the degree of the polynomial as an
indicator of distortion and the total number of degrees with the average number
as a parameter of intensity. Patients selected to process the images met the
inclusion criteria in the study group. The CN algorithm selected and analyzed 65
ILD scans (UIP, NSIP, chronic hypersensitivity pneumonia, organizing
pneumonia, and sarcoidosis) and 31 normal high-resolution computed
tomography (HRCT)scans. The results obtained by the analytical method were
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compared with the initial diagnoses and correlated with scores predicting
survival in diffuse interstitial pneumopathies.

Data were collected and analyzed using the Microsoft Office Excel
program. They were presented in the box plot format of graphs revealing the
statistical distribution, highlighting the four quartiles and the mean value of the
distribution. The standard deviation is specified in absolute and percentage
values in the proper places compared to other relevant series. The unpaired
parametric t-test assessed the significance of differences between groups. If the
test statistic is less than the critical value, then the null fails to be rejected. We
reject the null hypothesis when the test statistic exceeds the critical value. The
p-value could be less than 0.05, and we could still have the test statistic be less
than the critical value. This would mean that the a we chose was less than 0.05
and would mean that we would accept the null hypothesis.






GENERAL PART

1. ILD BACKGROUND

Pulmonary interstitial pathology is strongly regulated by various
diseases affecting the respiratory system. Even though individual problems
have a prevalence close to the cutoff for being considered rare diseases, they
constitute a sizeable portion of pulmonary medical practice when taken
collectively (1). Diffuse interstitial lung diseases, also known as simply
interstitial lung diseases (ILDs), are a heterogeneous group that includes
more than 200 different disorders. These diseases are characterized by
diffuse damage to the lung parenchyma, with varying degrees of
inflammation, fibrosis, and architectural distortion. Even though they start in
the pulmonary interstitium, most pathological diseases spread further and
affect other parts of the lung, such as the alveolar space, the small airways,
the arteries, and/or the pleura. The interstitium extends between the alveolar
epithelium and the pulmonary vascular endothelium. It contains different
types of cells (fibroblasts, myofibroblasts, macrophages) and extracellular
matrix components (collagen, elastin, proteoglycans) (2).

ILDs frequently show signs and symptoms similar to one another, although
having distinct patterns of development. It can be challenging to establish the
appropriate diagnosis and therapy for an ILD, which usually requires a multi-
disciplinary approach (3). Many of these maladies are of unknown cause, and little
is understood about their pathogenesis. In this described framework, they are
significant causes of morbidity and mortality. (4)

1.1. PULMONARY INTERSTITIAL FIBROSIS PATHOGENESIS
Understanding of the pathogenesis of pulmonary fibrosis has advanced
over the last decade. Specific and often unknown triggers initiate lesions,
activating distinct pathways that conduct fibrosis of different histological models
in genetically susceptible individuals (5). Initially thought of as a mainly
inflammatory process, pulmonary fibrosis appears to be driven by persistent
injury to the alveolar epithelium and interstitium, leading to an aberrant wound-
healing response. Destruction of the alveolar-capillary basement membrane
triggers immune cell recruitment and promotes fibroblast differentiation into
myofibroblasts, the fundamental effector cell in pulmonary fibrosis. Malfunction
of epithelial repair results in scarring of the lung, characterized by excessive
collagen deposition, architectural distortion, and irreversible loss of function (6).



1.2. ILD CLASSIFICATION AND EPIDEMIOLOGY

ILD is a suitable "catch-all" for a heterogeneous group of maladies (7).

The ILDs have been subcategorized as follows into four categories (8),(9),(10):

Those with a known cause (environmental and occupational exposure,
auto-immune disorder, and drug-related (Dr-ILD)) primarily result from
connective tissue disorders (11). Prolonged exposure to work and
environmental substances can have toxic effects on the lungs. Typical
pathogens are mineral or organic dust and toxic gases (12).
Epidemiologically, it is difficult to measure the extent of the exposure-
related injury. It is probably more common than we know. For this aim, it
is imperative to thoroughly search the patient's entire work history and
home for clues about possible pathogen-disease relationships.
Connective tissue diseases (CTD-ILD) and vasculitis affect all areas of
the lung (bronchioles, parenchyma, alveoli). This is why interstitial lung
disease is a common feature of rheumatic disease (13), (14). Over 350
drugs have been found to cause pulmonary complications through
reactive metabolites or as components of systemic responses (15).
Diagnosis is possible with appropriate clinical findings and must be made
after other causes have been ruled out in most cases.

Those with a granulomatous manifestation, such as sarcoidosis or
hypersensitivity pneumonitis (HP) (or extrinsic allergic alveolitis);

Those with unknown causes — without identifiable causes- are
gathered under idiopathic/primary (IIP), which uses the histopathological
and radiological approach as its infrastructure. Major IIP group includes
chronic fibrosing forms like-idiopathic pulmonary fibrosis (IPF),
Idiopathic non-specific interstitial pneumonia (NSIP) together with
acute/subacute forms- Acute interstitial pneumonia (AIP), and
Cryptogenic organizing pneumonia (COP), and smoke induces-
respiratory bronchiolitis-associated ILD (RB-ILD) and desquamative
interstitial pneumonia (DIP). Rare IIPs are |diopathic lymphoid interstitial
pneumonia (LIP) and pleuroparenchymal fibroelastosis (PPFE).
Unclassifiable IIP causes include inadequate clinical, radiological, or
pathological data and significant discordance between clinical,
radiological, and pathological findings.



e Furthermore, the "remainders" are primarily sporadic diseases with
a very low incidence- Langerhans cell histiocytosis (LCH) and
lymphangioleiomyomatosis (LAM).

Idiopathic pulmonary fibrosis (IPF, 20.3%), interstitial pneumonia with
autoimmune features (IPAF, 17.9%), connective tissue disease-associated ILD
(CTD-ILD, 18.3%), and unclassifiable idiopathic interstitial pneumonia (UIIP,
14.7 percent) were identified as the four most prevalent subtypes of ILDs in a
recent study (16) involving nearly 2000 participants. IPAF is a provisional
category of ILD with subtle characteristics for an autoimmune etiology that does
not match the categorization criteria for a particular CTD and is consequently
allocated to the subgroup of idiopathic interstitial pneumonia for the time being
(P) (16),(17).

Idiopathic interstitial pneumonia (1IP) is the most prevalent, with IPF and
IPAF being common symptoms. IPF has a chronic/fibrotic manifestation,
whereas IPAF has a predominantly inflammatory one, collectively accounting for
about 40 percent of total cases (16). IIPs generally account for over 80 percent
of ILDs, supporting a Pareto distribution.

Its high incidence and dire prognosis distinguish idiopathic pulmonary
fibrosis (IPF). IPF mortality is high, surpassing most tumors, with a median
survival period of 3-5 years after diagnosis (18). Due to the extraordinary
improvement of antifibrotic medications, an accurate IPF diagnosis in the early
stages significantly impacts the patient's prognosis (19).

Figure 1 depicts a Sankey diagram of an ILD categorization based on
(20). The node width and flow are proportionate to each disorder class's relative
incidence frequency. Recognizing that variances are associated with population
ethnicity, age, socioeconomic level, genetic imprinting, geographical location,
etc., the values used to indicate the general proportions are not exact numbers.
Because individual ILDs are rare, little is known about their actual incidence.

Differential diagnosis of ILD must consider atypical pneumonia (including
Pneumocystis species), the lymphangitic spread of cancer, and congestive heart
failure, all of which may present with similar chest radiographic features;
however, numerous paraclinical tests can confirm/disprove these hypotheses
(21).
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1.3. ILD PROGRESSIVE PHENOTYPES

Establishing findings and patterns specific for diffuse interstitial lung
diseases or histopathologic injury based only on one HRCT study is not
recommended, especially when an early disease is involved. The accuracy of
HRCT for predicting the correct prime diagnosis is improved by the accessibility of
several imaging scans spaced over time, as a single HRCT from a one-time point
may not represent the true nature of ILD (22).

Suppose IPF evolution is indubitable with progressive fibrosis for other ILDs.
In that case, there is consistent variability in the disease course, depending on the
predominant slope, inflammation (with a high potential of reversibility), or fibrosis,
significantly impacting management and treatment (23). In 2013, Travis et al. (9)
proposed five longitudinal behavior pattern categories for ILD evolution, of which
three are fibrotic specific. Thus, pulmonary fibrosis may be intrinsically non-
progressive and stable, with residual damage after removing a trigger (e.g., Dr-ILD).
Alternatively, it could be irreversible fibrosis, progressive, with the potential for
stabilization. Progression is stabilized by immunomodulation, at least in the short
term. (e.g., mycophenolate mofetil therapy in CTD- ILD (24) and HPc (25)). The
third one, the dreaded one, is progressive pulmonary fibrosis (PPF) in non-IPF
disorders, characterized by progression regardless of treatment considered
appropriate in individual ILDs (IPF-like disease) (26).

All three phenotypes require a constant, long-term follow-up of the HRCT
imaging evolution of the disease according to which the case is managed:
maintaining the status and preventing or slowing down the progression.
(27),(28).

Quantitative imaging techniques can provide significant additional
information compared to single time points continuously. They can be used in
various ways, including 1) improving the accuracy of initial diagnosis. 2)
Assistance with estimating forecasts. 3) identify disease progression; 4) detect
new processes in patients with acute or worsening symptoms; 5) detect other
abnormalities or complications such as lung cancer. (29),(30).

A trend (26) accelerated by the failure of conventional therapies and the
widespread use of antifibrotic therapies in a subset of patients has focused on
the progressive fibrotic phenotype of interstitial lung disease. The histologic and
imagistic pattern known as usual interstitial pneumonia (UIP) is the hallmark of
progressive fibrosis. Nevertheless, progressive fibrosis is not limited to this
histological entity. (5)

Fibrosis is the ultimate result of cellular damage, matrix damage, or
mutual by various mechanisms, including trauma, thermal injury, chemical injury,
hypoxia, and immune-mediated injury (33). Some patients get a progressive



phenotype characterized by self-perpetuating fibrosis, reduced lung function,
poor quality of life, and eventually premature death under the umbrella of
progressive fibrotic ILD. (34).

The term progressive pulmonary fibrosis (PPF), other than IPF, was
proposed by (26) instead of progressive interstitial lung fibrosis, highlighting an
underlying ILD condition (IPF-UIP-like) that produces rapid lung deterioration
beyond the interstitium. Diagnostic criteria for the PPF phenotype (Fig. 2)
definition input clinical, physiological (31), and radiological (32),(33), hasty
impairment occurring within the past year with no alternative explanation.

Imagistic HRCT fibrosis progression is usually assessed visually based
on the percentage of lung volume with fibrotic features in the upper, middle, and
lower lung areas. Side by side, adjacent HRCT sections of the initial and follow-
up CT examinations are compared after adjustment for lung volume changes.
Increased areas or severity of traction bronchiectasis and bronchiolectasis,
novel ground-glass opacity with traction bronchiectasis, novel fine reticulation,
augmented lobar volume loss, and new or increased honeycombing are the
radiological features that must be carefully screened. Elevated levels of fibrotic
features indicate progression (34).

. Worsening respiratory

; Clinic symptoms
\ *Absolute decline in FVC >5%
5 \ predicted within 1 yr of follow-up
PPF22 of the followmg | Physiological *. Absolute decline in DLCO (corrected
— \ for Hb) >10% predicted within 1 yr of
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\

\ A MIteLIg V.

A / ) am—
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Fig. 2 Diagnostic criteria for progressive pulmonary fibrosis (PPF)
Adapted after (26).PPF Definition is at least 2 of the 3 criteria (clinical, physiological, and radiological mentioned) for
the past year. IPF= idiopathic pulmonary fibrosis; ILD=interstitial lung disease; PPF=progressive pulmonary
fibrosis., DLco= diffusing capacity for carbon monoxide, FVC=force vital capacity



Several trials (35),(36) suggested that antifibrotic medication has a
beneficial effect in interstitial lung diseases (ILDs) other than IPF with PPF
phenotype (35),(36). Thus, a scheme for the most prevalent and representative
ILDs with PPF features has been proposed in table 1. Accordingly, rapid
identification of different types of ILD progression and early imaging HRCT
diagnosis are the golds that must be achieved.

In a recent study (37), interstitial lung abnormalities (ILA) progression is
relatively common and associated with increased age and an increased mortality
rate. Precise imaging findings (e.g., traction bronchiectasis) and patterns (e.g.,
a probable UIP pattern) (38) are strongly associated with ILA progression, too.

Table 1 Interstitial lung diseases (ILDs), other than IPF, demonstrating progressive pulmonary

fibrosis (PPF)features
Interstitial lung Disease(ILD) other then Idiopathic Pulmonary Fibrosis(IPF)
IIP Autoimmune-ILDS  Exposure -related LD with cysts andlor  Granulomatosis
airspace filling
AFOP A ssc Arp A cH A sarcoidosis
iPPFE RA Occupational- Lymphoproliferative
Pneumoconiosis
Unclassifiable MCTD Illicit Drugs PAP
AlP Vasculitis Medication LAM
iDIP Sjogren Radiation Others
iNSIP Myositis Post Infections
iLIP SLE
cop Others

Adapted after (26). The arrows indicate an increase in the incidence of PPF in ILD with disease progression. AIP =
acute interstitial pneumonia; AFOP = acute fibrinous and organizing pneumonia; COP = cryptogenic organizing
pneumonia; DM= dermatomyositis; HP = hypersensitivity pneumonitis; iDIP = idiopathic DIP; IIP = idiopathic
interstitial pneumonia; iLIP = idiopathic lymphoid interstitial pneumonia; INSIP = idiopathic nonspecific interstitial
pneumonia; iPPFE = idiopathic pleuroparenchymal fibroelastosis; MCTD=mixed connective tissue disease; PAP =
pulmonary alveolar proteinosis; PM= polymyositis; RA = rheumatoid arthritis; SLE = systemic lupus erythematosus;
SSc = systemic sclerosis LCH= Langerhans cell histiocytosis;. LAM= lymphangioleiomyomatosis;

1.4. ILD TREATMENT

The differential diagnosis of fibrosing ILDs is difficult because clinical,
radiological, and pathological characteristics often overlap, requiring a
multidisciplinary approach (39). In this setting, it is essential to establish a
conclusive diagnosis because nonpharmacological and pharmacological
treatment approaches (including corticosteroids, immunosuppressants, and,
more recently, antifibrotic agents) are disease-specific(40), (41).
Histopathologically, all ILDs exhibit varying degrees of inflammation and fibrosis



that are highly variable among ILD subtypes and individuals with the same
disease. When the inflammatory pattern predominates, the histology is that of
organizing pneumonia (OP) or nonspecific interstitial pneumonia (NSIP), which
response well to corticosteroid anti-inflammatory treatment. In contrast, in the
fibrosis pattern, the presentation is usual interstitial pneumonia (UIP) with
fibroblastic foci and lesser inflammation response, reacting well to anti-fibrotic
medication (42).

1.4.1. PHARMACOLOGICAL TREATMENT

Pharmacological treatment is divided into two parts: one that aims to
reduce and stabilize disease development and the other that aims to counteract
the effects of ILD on the lung. Prednisone or a related derivate substance is the
most commonly used oral corticosteroid medicine in treating ILD. ILD
progression is considerably slowed or even prevented when combined with
certain immunosuppressive medications (such as mycophenolate mofetil,
azathioprine, cyclophosphamide, and rituximab). However, the adverse effects
must be constantly monitored, and the quality of life may be reduced.

Antifibrotic medications, such as pirfenidone and nintedanib, are aimed
at the lung tissue, minimizing the amount of scarring present and preserving lung
function- a primary indication in IPF. In contrast, the side effects are significantly
more severe than in the preceding selections, and robust doctor-patient dialogue
is essential to make this choice (43), (44) summarizes the clinical practice
guidelines and statements for ILD. The American Thoracic Society (ATS), the
European Respiratory Society (ERS), and the Fleischner Society are critical
players in developing the guidelines. If the initial guidelines focused on IPF, the
revised guidelines expand beyond IPF management to include treatment
recommendations for other ILDs (26).

1.4.2. NON-PHARMACOLOGICAL TREATMENT

Long-term oxygen therapy must be provided to people who have severe
chronic resting room air hypoxemia (45). Pulmonary rehabilitation aims to
improve daily functioning.

There is a broad spectrum of responses to the medication; some ILDs
may not respond at all, while others may react immediately. Even the success
criterion is flawed: the treatment is successful if the measurements (symptoms,
physiologic, and imagistic data) indicate stabilization. Nevertheless, experience
demonstrates that this plateau is only transitory. The deterioration of a patient's
condition may be caused by the ILD's natural course, comorbidities, or adverse



drug effects. Osteoporosis, infection, and muscle weakness are typical
therapeutic side effects that might lead to condition deterioration.

The progressive fibrosing interstitial lung disease phenotype should
consistently and continuously be evaluated for transplantation (46).
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2. ILD IMAGISTIC PATTERNS

2.1. WHAT ARE THE SIGNIFICANT CT FEATURES FOR MAKING A
DIAGNOSIS OF ILD?

HRCT represents the standard investigation when an ILD is suspected.
Compared with chest X-rays, thin-slices computed tomography is more sensitive
and specific for diagnosing interstitial lung syndrome. HRCT is indispensable in
the exploration of interstitial syndromes. Image acquisition achievable with
modern equipment of the tomographic slice is a thickness of 1,5 mm or less. The
smaller the distance between the cups, the higher the resolution is. Model-based
iterative reconstruction techniques are also used, increasing the image's
accuracy. An incremental reduction in overall radiation dose is obtained using
spaced axial imaging provided compared with volumetric computed tomography.
Volumetric imaging, on the other hand, could give quantitative lung imaging
information in the serial follow-up of ILD, able to evaluate the extent of lung
damage affected by the disease. (47). A computed tomography performed under
standard conditions, with sections of 3 or 5 mm, can be a source of confusion,
not detecting the characteristic changes of ILD, resulting in loss of definition of
small vessels, airways, nodular infiltrates, and septa. Also, the exam with
contrast substance can confuse the visualization of the pulmonary interstitium,
keeping its value only for the correct detection of hilar and mediastinal
adenopathy (27), (48).

In addition to the obligatory full inspiration to a total lung capacity scan,
a "complete" thin-section CT includes two more acquisitions: an expiration and
a prone scan. Expiratory sequences are explicitly included to assess the
presence of small airway disease and to explore aspects of air trapping for
possible obstructive function issues. Some patients require prone imaging to
detect early or mild ILD. Dependent position pulmonary atelectasis is often seen
on supine inspiratory scans, which may mimic mild subpleural reticular
abnormalities and ground-glass opacities (49),(38).

Thin-section CT detects anatomical structures of the lung parenchyma,
particularly elements of the secondary lung lobule. It represents the minor
pulmonary structure, surrounded by a connective tissue septum. It has a
polyhedral shape, 1-2.5 cm in diameter, in the center having the centrilobular
arteriole and bronchiole, on the periphery with veins and lymphatics in the
interlobular septum (figure 4). The secondary pulmonary lobules are better
expressed in the subpleural spaces and along the lung fissures. Under normal
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conditions, it cannot be identified on standard chest radiography; however, the
interlobular sept is visible on HRTC even on a customarily constituted lung (50).

The pulmonary interstitium can be separated into three compartments:
the peribronchovascular or axial interstitium, the centrolobular interstitium with
intralobular septa (of the secondary lung lobe), and the peripheral interstitium
(which includes the interlobular septa, as is seen in figure 3 with the secondary
lung lobe scheme). A close relationship exists between the pulmonary
interstitium and the airways, so any lung disease affects the interstitium to some
extent. It responds to injuries by thickening.

bronchipl:

& % Alyeoli ‘v.
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Fig. 3 HRCT, a thin axial section of the lung —with emphasis on the secondary pulmonary lobule
(revealed structure and vascularization)

HRCT imaging patterns and their distribution in the lung and the
secondary lung lobule are essential to obtain a more truthful diagnosis of ILDs.
Understanding secondary lobular anatomy and the appearance of lobular
structures are keys to interpreting HRCT. Thin-section CT can show many
secondary pulmonary lobule features in both, normal and abnormal lungs. Many
lung diseases, particularly interstitial diseases, produce some characteristic
changes in the location of lobular structures, helping the ILD subtypes to be
highlighted. The distribution pattern is an acknowledged diagnostic criterion
(20),(28), which is evaluated in two dimensions: in the apico-basal gradient and
concerning the secondary pulmonary lobule (SPL) with the interstitial
distribution. Also, HRCT imaging could scan other extra patterns, like the
presence of pleural effusion, pneumothorax, costophrenic angle spares, and so
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on, narrowing the ILD etiological spectrum. Essentially, we can stratify lung
imaging primary lesions into four categories: reticular pattern, nodular pattern,
high attenuation, and low attenuation, whose distribution, overlap, and
association with other lesions matter (51), (52). The findings are summarized in
figure 4.
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Fig. 4 Logical flow for HRCT interpretation
Adapted after (10)

2.1.1. RETICULAR PATTERN

Reticulation, or simple reticular pattern, is described by all the
intersecting lung opacities, giving it the appearance of a network. Varying
degrees of inflammation and fibrosis due to interstitium injury cause thickening
of the intra and interlobular septa of the secondary pulmonary lobule. Since the
septa have an anatomically linear shape, the thickening follows that contour,
resulting in intersecting lines. On HRCT scans, aspects of this line network could
suggest an etiology or ILD progression to fibrosis (53). For example, the smooth
thickening of the interlobular septa from acute pulmonary edema should be
differentiated from the arciform thickening shape of the intra/interlobular septa
found in idiopathic or secondary pulmonary fibrosis because of the pulmonary
scar distortions. UIP pattern is frequently associated with other evidence of
fibrosis, including architectural distortion and bronchiectasis (Fig.5 (b)) (54).
Therefore, in patients with UIP, reticulation is often irregularly spaced, with a
mixture of thick and thin lines, in contrast to CT scans from non-specific
interstitial pneumonia, in which spacing is more regular lines and more
homogeneous in thickness (Fig.5 (a)) (38).



Fig. 5 Axial thin-section CT -Reticulation pattern
Scans belong to the 'Dr. Victor Babes' Infectious Diseases and Pneumoftiziology Clinical Hospital
Timisoara database; Fig. 5 (a) - subpleural smooth reticulation of possible UIP pattern. Fig.5 (b) -
Arciform reticulation with architectural distortion and bronchiectasis of fibrosing UIP, IPF case

2.1.2. MICRONODULAR PATTERN

The classification of lung nodules can be done by size, in large (>10 mm
and < 30 mm), small (< 10 mm and >3 mm), and micro-nodules (<3 mm) (53).
The distribution of micro/nodules shown on thin-section CT is essential in
accurately diagnosing the nodular pattern and its impact on ILD classification.
Relation to the configuration of the secondary pulmonary lobule and subpleural
sparing can place multiple small lung nodules into one of three categories:
perilymphatic (with inter lobular septa affinity, linearly interconnected, like
appears in sarcoidosis- fig .6 (b), centrilobular (no contact with the pleural
surface and with equal distances between them, e.g., hypersensitivity
pneumonitis- fig. 6 (a) or random (diffuse, vascular) distribution (e.g.,
pneumoconiosis, miliary tuberculosis, fungi spread) (55), (54).
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Fig. 6 Axial thin-section CT -Micronodular pattern
Scans belong to the 'Dr. Victor Babes' Infectious Diseases and Pneumoftiziology Clinical Hospital
Timisoara database; Fig.6 (a) -centrilobular micronodules distribution of hypersensitivity pneumonitis
patients. Fig. 6 (b)- perilymphatic micronodules distribution of sarcoidosis patient.

2.1.3. HIGH ATTENUATION

Ground-glass opacity (GGO) refers to a homogeneous area of
increased lung opacity (a process that partially fills the airspaces). The amplified
opacity does not obscure the underlying bronchial and vascular structures (fig.7
(a)). Ground-glass opacification may either be the result of air space disease
(partial filling of the alveoli) or early interstitial lung disease (smooth thickening
of the interstitium or alveolar walls-e.g., fibrosis) as a result of fluid, cells, and
fibrosis presence (54). The GGO pattern is widespread in ILD. However, it is
unspecific and may represent a reversible process if not associated with other
fibrosis evidence, such as traction bronchiectasis, honeycombing, and
reticulation. There is evidence that the HRCT aspect of GGO indicates
inflammatory process activity, especially in fibrosing alveolitis, extrinsic allergic
alveolitis, and squamous interstitial pneumonia (28). UIP is unlikely when pure
ground glass opacity is present as an isolated finding of diffuse ILD. The
presence of abundant pure ground glass opacity in a patient with fibrotic ILD,
particularly in non-fibrotic lung areas, suggests acute exacerbation or infection
(56), (57). In the Hounsfield Unit (HU), the GGO spans an apparent interval [-
703,-368), specific to the General Electric Healthcare Optima 520 (58).

Consolidation is denser than GGO and depicts the moment when the
airspaces are entirely filled with air. Yet, one can detect the air bronchogram
presence (Fig.7 (b)). Alveolar spaces could be filled with pus, edema,
hemorrhage, inflammation, or tumor cells (59). It is usually an accumulation of
exudate or material in the alveoli, as in chronic obstructive pulmonary disease
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(COPD) (60). Still, it can sometimes result from severe pulmonary fibrosis, such
as sarcoidosis (61). Consolidation is not characteristic of UIP but may be seen
in IPF patients with overlapping infections or malignancies. From a purely visual
perspective, the consolidation looks like a visually defined compact opacity in
ILD, whose boundaries are poorly defined in other diseases. The density of HU
values varies between (-100,5), matching reticulation (62).

Atelectasis refers to lung tissue retraction and reduction, with the
absence of air in the alveoli and alveoli collapse. It is a pulmonary volume loss,
either entirely or partially. On rare occasions, when the HRCT is made in a prone
position, atelectasis and hypoventilation can mimic the fibrosis appearance in its
early stage (63).

Fig. 7 Axial thin-section CT -High attenuation pattern
Scans belong to the 'Dr. Victor Babes' Infectious Diseases and Pneumoftiziology Clinical Hospital
Timisoara database; Fig.7 (a) -axial HRCT section of extensive GGO areas, with mild reticulation, case of
a patient with NSIPcellular pattern, with scleroderma; Fig.7 (b)- double pneumonia, in ILD bacterium
suprainfection; Fig.7 (c)- a case of organizing pneumonia after a severe form of SARS CoV?2 viral
infection- with atoll sign present (blue arrow)
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Organizing pneumonia is the usual reaction to lung lesions during the
healing process, most likely to a lung infection, but also found after radiation
therapy, inhaling injury, neoplasm, and drug toxicity. In HRTC evaluation, it may
have a multitude of appearances, including nodular images and irregular GGO
patterns, but most often peripheral bilateral consolidation (atoll sign-Fig. 7 (c))
(63), (64). This distribution does not overlap UIP, which has a typical basal and
subpleural distribution, which is often heterogeneous.

2.1.4. LOW ATTENUATION

Emphysema appears as polygonal or rounded low-attenuation areas
deprived of walls (fig.8 (a)). Interlobular septa surrounding the emphysematous
regions of the lung, compressed lung tissue, and perilobular vessels can make
the diagnosis hampered and misinterpreted as walls (65). Sometimes, a central
white dot representing the pulmonary artery within the secondary pulmonary
lobule can be seen (66).

Cysts are round circumscribed areas of lucency or low attenuation of 1
cm or more in diameter, surrounded by an epithelial or fibrous wall, and typically
have discrete walls (fig.8 (b)). Cysts, not honeycomb cysts (i.e., do not stack
along the subpleural lung), suggest a diagnosis other than IPF. Lung cysts are
the principal pattern of specific interstitial diffuse lung diseases, including
pulmonary Langerhans cell histiocytosis and lymphangioleiomyomatosis. Still,
they can also be seen in lymphoid interstitial pneumonia and desquamative
interstitial pneumonia (67).

Air trapping refers to lung regions that, following expiration, do not show
the typical increase attenuation or show little change in the cross-sectional area;
the presence of air trapping suggests small airway disease, with excess gas
("air") retention in all or part of the lung. Mild cases of air trapping may be
discernible only on expiratory scans, while in more severe cases, inspiratory
thin-section CT may show evidence of a mosaic attenuation pattern. Air trapping
in ILD is commonly associated with hypersensitivity pneumonia, constrictive
bronchiolitis, and sarcoidosis (68).
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Fig. 8 Axial thin-section CT -Low attenuation pattern
Scans belong to the 'Dr. Victor Babes' Infectious Diseases and Pneumoftiziology Clinical

Hospital Timisoara database; Fig.8 (a) -axial HRCT section of panlobular emphysema, Fig.8 (b)-axial
HRCT section of upper distribution cyst of an LCH patient

Honeycombing (fig 9.14) is clusters of small cyst air space (hypolucent
areas), ranging in diameter from 0.3 to 1.0 cm (but occasionally as large as 2.5
cm), with well-defined walls linked together, often thick walls, uniformly and
multilayer display (69). They could effortlessly be confused with traction
bronchiectasis and bronchiolectasis. The main difference between them is that
while the honeycombing cyst pattern always has a subpleural distribution, with
no sparing of the subpleural surface, the irreversible dilated airway connects
back to the more central airways, often with irregular and tortuous pathways (54).
Interobserver variability burden for the presence or absence of honeycombing,
bronchiectasis, or their combination remains a real issue in the practical
approach (63). Honeycombing cysts consist of massive dilatation and disruption
of peripheral airspaces due to surrounding alveolar septal fibrosis and
tangentially viewed traction bronchiolectasis; the remodeling process appears to
be a continuum from traction bronchiectasis to honeycombing, and that
theoretical separation of the two processes may be confusing (70),(71).
Represent the permanent end-stage of parenchymal destruction in patients with
interstitial fibrosis. (64). Practical, it is a severe fibrosis feature that typically
appears in UIP but is not pathognomonic for IPF because it could translate to
final fibrotic stages of sarcoidosis, HP, and NSIP pattern (72),(73).

Architectural distortion Implies any distortion of the normal lung
parenchymal anatomy. In the context of ILD, an abnormal appearance of the
secondary pulmonary lobule shape or size, with evidence of volume loss
demonstrating tethering and warping of the usual hexagonal format, will appear (54).
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2.1.5. OVERLAPPING MODELS

In imaging practice, the primary lesions in the appearance of ILD may exist
independently, but we often find them in various combinations, overlapping, creating
accurate models that may be typical or less for a particular ILD entity (74), (75).
Examples of this primary elements mixture are offered in Fig. 9.

Mosaicism (fig.9.13) - The term mosaic attenuation is used to describe
density differences between affected and non-affected lung areas. The mosaic
attenuation pattern is caused by either ventilation deficiency (airway
narrowing/air trapping such as RB) or perfusion impairment (reduced perfusion
in these pathological areas secondary to vasoconstriction like pulmonary chronic
thromboembolism experience)(76). Thin-section CT aspects perform like
heterogeneous attenuation of the lung parenchyma, with generally well-defined
geographic borders corresponding to the outlines of the pulmonary lobule.
These low attenuation areas may only be apparent on expiratory scans. Patchy
black and white lung areas may help identify the underlying process (77).
Answering the question of which area is abnormal, the black or the white lung,
is a significant element of clinical management (56).

Head cheese pattern (fig.9.13)- Multiple areas of mosaic attenuation (low
attenuation), ground glass opacities (high attenuation), and normal lung tissue
(normal attenuation). Therefore, it reflects a collocation of regions with three (or
sometimes more) variable densities of different attenuation within the lungs, with a
heterogenous appearance of the parenchyma, and was called the three-density
pattern (78). It is considered highly specific for chronic hypersensitivity pneumonitis
but could appear in other ILDs like sarcoidosis (79).

A crazy-paving pattern (fig.9.12) appears as ground-glass attenuation
with superimposed interlobular septal thickening and intralobular lines (80). The
crazy-paving pattern is often sharply demarcated from normal lungs. It may have
a geographic outline, often with lobular or geographic sparing. It is a hallmark of
pulmonary alveolar proteinosis but could be found in acute exacerbation of IPF,
diffuse alveolar hemorrhage, and organizing pneumonia, representing an
ancillary or uncommon finding (81).

Reversed halo sign (atoll sign) - Fig 9.11 is defined as a central, focal
rounded area of ground-glass opacity surrounded by denser consolidation of
crescentic shape (forming more than three-fourths of a circle) or complete ring
(ring-shaped opacities) of at least 2 mm in thickness (82). The reversed halo
sign is a well-recognized CT pattern associated with organizing pneumonia (83),
which is most commonly cryptogenic (COOP) but can also be secondary to a
wide range of pulmonary diseases (84).
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Fig. 9 Axial thin-section CT - -injury patterns: high density, low density, reticular and nodular
pattern, and overlapping
Scans belong to the 'Dr. Victor Babes' Infectious Diseases and Pneumoftiziology Clinical Hospital
Timisoara database. Primary lesions: Fig.9.1-9.3-GGO, consolidation, atelectasis of LLL; Fig 9.4-9.6-
emphysema, Cyst, air trapping; Fig.9.6-Fig.3.8-smooth reticulation, arciform reticulation with parenchymal
destruction; Fig 9.9-9.10- perilymphatic and centrolobular micronodules distribution; Overlapping:
Fig.9.11- cryptogenic organizing pneumonia (COP), with the atoll sign; Fig. 9.12-Alveolary proteinosis-
with the crazy paving pattern; Fig.9.13-Chronic hypersensitivity pneumonia, with the headcheese pattern
and mosaicism; Fig. 9.14- idiopathic pulmonary fibrosis with the usual interstitial pneumonia pattern.

2.2. INTERCONNECTING HISTOPATHOLOGY WITH HRCT
IMAGISTIC APPEARANCE

Radiological diagnosis of ILD is pattern-based and linked to
underlying histology. Findings at HRCT generally reproduce the macroscopic
abnormalities seen by pathologists. Thus, working knowledge of the
interconnection between histopathological changes and HRCT patterns with the
typical appearance of common ILDs is essential in daily practice (85).

Many ILDs prefer certain zones. Evaluation of the dominant distribution
is, therefore, an essential tool. For example, it is known that in most patients with
idiopathic pulmonary fibrosis (IPF), the disease tends to be most prominent in
the middle to lower zone. This contrasts with fibrosis in sarcoidosis patients, who
usually favor the upper lobe. In addition, radiologists need to consider axial
distribution (i.e., central versus peripheral), which is of potential value. Using the
example of IPF and sarcoidosis again, the former is often peripheral
(subpleural). At the same time, the disease is more central (and bronchocentric)



20

in the latter. A final example is seen in patients with organizing pneumonia. In
this case, consolidation may be more pronounced in the perilobular trend (64).

In addition to zonal distribution, distribution at the level of secondary
pulmonary nodules may also be diagnostic. This is especially true for
micronodular disease, where assigning nodules to one of the three centrilobular,
perilymphatic, and random distribution types helps narrow the differential
diagnosis (63).

As previously mentioned, usual interstitial pneumonia (UIP), non-specific
interstitial pneumonia (NSIP), organizing pneumonia (OP), acute interstitial
pneumonia (AIP), desquamative interstitial pneumonia (DIP), respiratory
bronchiolitis-associated interstitial lung disease (RB-ILD), as major IIPs,
together with rare IlIPs such as lymphoid interstitial pneumonia (LIP),
pleuroparenchymal fibroelastosis (PPFE) are part of the family idiopathic
interstitial pneumonia (lIPs). Unique entities like lymphangiomyomatosis (LAM),
Langerhans cell histiocytosis (LCH), Pulmonary Alveolar Proteinosis (PAP),
granulomatosis disease (like sarcoidosis or hypersensitivity pneumonitis -HP)
together with |IPs are included in diffuse interstitial lung diseases (ILDs) of
unknown cause (86). Each of these entities has typical imaging and histological
patterns, although imaging patterns appear to be associated with more
significant inter-interpreter variability in practice (87), (88). Each entity may be
idiopathic or secondary to identifiable causes such as collagen vascular disease
or inhalation exposure. Diagnosis of idiopathic interstitial pneumonia correlates
with clinical, imaging, and pathologic features.

These mentioned findings of ILD are edified in Tables 2,3 and 4. The
histopathological pattern that intertwines with the imaging characteristics of
HRCT is presented in this multifaceted representation. Color clustering
according to the ILD classification (table 3), the histopathological forms and their
connections with age distribution, smoking, lung distribution, and the level of the
SPL are carefully detailed (table 2). Also, targeted information about the types
of primary lesions and how they merge to create specific HRCT models for a
particular histopathological ILD form are presented. Last but not least, with value
in clinical practice and the management of ILD, the corresponding clinical
syndromes and the possible differential diagnosis are revealed, too (table 4).
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Histological Sex Smoke Lung Distiibution PSL
Pattern: Age Average  Related M s Pb Pl
+++
UIP Cert +\- HdC] N
++
Probable UIP M, >50y HdOI N
Indeterminate UIP
" + N
(Incipient)
Acute Exacerbation Hd— Od
NSIP Incipient +0d | +\- + Y
Progressive F 40-0y +0d0 | +- + Y

DIP + ++0d +\- N
RB 30-40y + +\- +\- ++
++ ++ +
LIP F, 50y od 0d +\- N
PPFE 55-60y + N
DAH Acute/Resolution F + Y
Chronic +
LAM F, Fertile ++0d | ++0d | +/-Od
LCH Incipient + + +
Progressive A2ty + + +
Sarcoidosis M i + N
PAP M,30-50y +0d Od
HP Acute (Inflammatory) +Hd +Hd
Chronic (Fibrosis) +Hd +Hd +
Table 3 Classifying ILDs on clusters colors by histopathological pattern;
Histopathological pattern ILD
UIP / NSIP chronic fibrosing IIPs
Acute/subacute lIPs Major lIPs
DIP /RB Smoking-related IIPs
LIP / PPFE Rare IIPs
LAM/LCH ILD with unique/specific histology
Sarcoidosis / PAP | HP ILD with characteristic complex histology

Green patterns correspond to chronic fibrosing IIPs; blue patterns correspond to acute/subacute IPs; purple
patterns correspond to smoking-related IIPs; rare IIPs are the grey line of histopathological patterns; orange
lines are for ILD with unique histology.
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Table 4 ILD-Imagistic Pattern, clinical syndrome, and differential diagnosis

Imagistic Pattern
Lesion
L High Low
Nodules Reticulation ; i
. attenuation| attenuation HC [TBb Mon Hc | RHS

Arciorm

lobular

+
2-4mm, + |+ + + +-
>5mm
+ + ++
+ + + +
+ + + [ 4|+ ++

ILD-diffuse interstitial lung diseases; IIP- idiopathic interstitial pneumonia; UIP: usual interstitial pneumonia; NSIP-non specific interstitial pneumonia; AIP- acute
interstitial pneumonitis; OP- organizing pneumonia; COP- cryptogenic organizing pneumonia; DIP-desquamative interstitial pneumonia; RB-ILD-Respiratory
bronchioliis—associated interstitial lung disease; LIP-Lymfocitar interstitial pneumonia; PPFE- Idiopathic pleuroparenchymal fibroelastosis; DAH- diffuse alveolar
hemorrhage; DAD-diffuse alveolar damage; LAM- lymphangiomyomatosis; LCH - Langerhans cell histiocytosis; PAP- Pulmonary Alveolar Proteinosis; AE-IPF-acute
exacerbation of idiopathic pulmonary fibrosis; I-inferior/Basal; M-Medio pulmonary; S- superior; C1Hd-Heterogen distribution: distribution variations (occasionally
diffuse, can be asymmetric), multifocal distribution; Od-(Omogenus distribution)- uniform distribution/diffuse; PSL-pulmonary secondary lobule;
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Others

Clinical syndrome

Idiopathic DIP

Diff
Dg

Spares costophrenic angles

RB-ILD

-LES

-gravity-related (Shift with - ANCA vasculitis; Coagulation disorders, drugs,
gravity) -Sd Goodpasture linhaled toxins, or transplantation
Nodular calcification
+/-pneumothorax LAM can be sporadic or associated
chylothorax with tuberous sclerosis

Spares costophrenic angles

+/-pneumothorax LU
Lymphadenopathy: hilarious,
bilateral mediastinal, o
symmetrical, well defined = St
hilar consolidation
Secondary: in association with
. . malignant diseases, infections,
gzt silicon dust, aluminum, and
chemical substances exposure)
HP acute
HP chronic

Pb-Peribronchovascular; Pl-perilymphatic; Ps-pleural sparing = N/Y-No/Yes (subpleural/ peripheral distribution); GGO- ground glass opacities; C-consolidation; Ec-
emphysema centrolobular; Cy-cyst; At-air trapping; HC-honey combing; TB/b-traction brochiectasis/bronsiolectasis); Mo-mosaicism; Cp-Crazy paving; He-head
cheese pattern; RHS- Reversed halo sign (atoll sign); IPF- idiopathic pulmonary fibrosis; I-|diopathic; HP-hypersensitivity pneumonitis (c-chronic); Dr-drug related;
ANCA vasculitis: anti-neutrophil cytoplasmic antibody-associated vasculiis, Sd Goodpastrure: anti-glomerular basement membrane disease; CTD-connective
tissues diseases: ScS - systemic scleroderma; PR - rheumatoid arthritis; BMTC - mixed connective tissue disease; PM / DM - polymyositis/dermatomyositis; LES -

systemic lupus erythematosus;
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The characteristic computed tomographic (CT) features of usual
interstitial pneumonia (UIP) are subpleural and peripheric distribution, with an
apico-basal gradient (predominantly basal) of the lesions. UIP is the most
common form of chronic fibrosing lung disease. Various diseases, including
connective  tissue diseases, chronic hypersensitivity = pneumonia,
pneumoconiosis, and, in sporadic cases, sarcoidosis, can produce UIP.
Nevertheless, the most common cause of UIP is idiopathic pulmonary fibrosis
(IPF), in which no underlying diseases can be diagnosed (89). Characteristic CT
findings are reticulations, "honeycombing" cysts (confirming the diagnosis in
"typical UIP)-Fig.9.14, traction bronchiectasis, and bronchiolectasis with
architectural distortion; focal ground glass could appear (66) (38). The
morphological pattern of IPFs represents 55% of IIPs.

Non-usual interstitial pneumonia (NSIP) is predominantly ground-
glass opacity and/or reticular pattern. NSIP represents 14-35% of the
morphological pattern without obviously apical-caudal HRCT gradient. Lesions
distribution is homogeneous, bilateral, and can spare the subpleural space (90).
Subpleural sparing of the dorsal regions of the lower lobes is present in
approximately 40% of cases and may be a helpful feature in making the
diagnosis because it is considered very specific for NSIP (91). NSIP is classified
into two subtypes: cellular and fibrotic patterns, depending on which pathological
features predominate, inflammation or fibrosis (92). Pure ground-glass without
fibrotic changes is the hallmark feature of cellular NSIP, separated from the
fibrotic NSIP pattern in which there is reticulation, traction bronchiectasis, and
architectural distortion due to fibrosis. Aspects suggestive of progressive NSIP
versus UIP include the presence of extensive traction bronchiectasis without or
with minimal honeycombing changes (66). The occurrence of GGO in a patient
with IPF (UIP) means either an exacerbation of IPF or a lung infection. Finding
GGO usually goes with reversible diseases, contrasting with reticulation and
traction bronchiectasis, which appear in fibrotic findings. As shown in Table 4,
NSIP is usual the imagistic and histopathologic pattern for idiopathic NSIP and
connective tissue diseases (CTD), like systemic sclerosis or
polymyositis/dermatomyositis (PM/DM). Nevertheless, in mixed connective
tissue disease (BMTC), drug-related ILD or chronic hypersensitivity pneumonia
could also appear (93).

Morfopathological acute interstitial pneumonia (AIP)- also known as
Hamman-Rich syndrome) the substrate is diffuse alveolar damage (DAD) due
to acute onset and a rapidly progressive course of the disease (9) (94). Typical
HRCTsettings are bilateral ground-glass opacities (patchy or diffuse) and
consolidations, with predominance in the lower lobes. HRCT lesions differ
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depending on the evolutionary phase: in the acute exudative phase, GGO and
condensation appear, and in the organizing phase, traction bronchiectasis
predominates with parenchymal architectural distortion (95). There is clinical,
pathological, and radiological overlap with acute respiratory distress syndrome
(ARDS), and patients often present with respiratory failure developing over days
or weeks (63).

Organizing pneumonia (OP), usually described as predominating in the
lower lobes, has peripheral, subpleural, peribronchovascular SPL distribution
with bilateral patchy airspace consolidation/ground-glass opacities (multifocal
parenchymal consolidation), with or without small nodules around
bronchovascular bundles (centrilobular) (96). Abnormal findings like crazy
paving, peribronchial nodules, thickening bronchial walls, or ectasia could be
seen. Time-related migratory, fluctuating- some abnormalities disappear
spontaneously, and new areas of consolidation appear simultaneously in
different sites (97). Characteristic is the atoll sign-Fig.7c. Lung architecture is
preserved; fibrosis is absent.

Desquamative interstitial pneumonia (DIP) is typically characterized
by bilateral ground-glass opacities in the basal parts of the lung (seen in 92% of
patients). It is often associated with fine reticulation (98). Irregular reticulation,
traction bronchiectasis, and small cysts may occur. Honeycomb's appearance is
not usual. In addition to smoking, other factors such as systemic disease,
infections, and environmental/occupational exposure to toxic substances and
drugs may be associated with DIP (99).

Respiratory bronchiolitis—associated interstitial lung disease (RB-
ILD) is a mild inflammatory pulmonary condition. The histopathological substrate
of RB-ILD is respiratory bronchiolitis (RB). Thus, this entity is generally viewed
as an amplified respiratory bronchiolitis response that, compared to the merely
bronchiole-centered lesions seen in RB, leads to interstitial and air space
inflammation and fibrosis extending to the nearby alveoli. CT abnormalities
come with diffuse or predominantly upper lobes and thickening of the bronchial
walls, centrilobular emphysema, GGO, and centrolobular nodules, imprecisely
delimited (100). Some voices declare that RB-ILD and DIP represent different
points along the same disease spectrum. DIP is the more severe, with
panlobular diffuse mild-to-moderate interstitial fibrosis (101),(102).0On the other
hand, RB-ILD and DIP frequently co-occur (26).

Conform to the international classification of idiopathic interstitial
pneumonia (9), DIP, and RB-ILD into companionship with pulmonary
Langerhans cell granulomatosis belongs to the group of smoking-related
interstitial pneumonia. While 100% of respiratory bronchiolitis-associated
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interstitial lung disease cases are linked to cigarette smoking, this figure is 90%
for DIP (103). Depending on the classification, smoking-related acute interstitial
pneumonia and idiopathic pulmonary fibrosis may also be considered smoking-
related ILDs (104), differing from hypersensitivity pneumonitis and sarcoidosis,
ILDs that may be less prevalent in smokers (105). Smoking-related interstitial
lung disease is a problematic subgroup typically showing profound emphysema
with milder superimposed fibrotic changes. Smoking cessation is the primary
attitude to take to stop the ILD progression. Otherwise, if the patient does not
stop smoking, GGO in DIP may evolve into fibrosis or cystic lucencies.
Langerhans cell histiocytosis (LCH) nodules may cavitate and evolve into
irregular thick wall cysts (106).

Cystic abnormalities features may be the guidance element of several
rare lung diseases, such as lymphangioleiomyomatosis (LAM), Langerhans cell
histiocytosis (LCH), lymphocytic interstitial pneumonitis (LIP), desquamative
interstitial pneumonitis (DIP)(107). Wall thickness (thin or thick) and anatomical
distribution (spread or sparing of particular areas of the lung) can be pretty
helpful for narrowing the differential diagnosis for diffuse lung diseases. LAM
and LCH are ILDs with unique/specific histology. If LAM, a rare progressive
multisystem disorder, predominantly impacts women of reproductive age, LCH
affects young, primarily male smokers. The characteristic abnormality on lung
CT scans in patients with LAM is the presence of thin-walled cysts scattered in
a bilateral, roughly symmetric pattern without any lobar predominance (108).
LCH CT findings reveal centrilobular nodules or/and tick wall cysts with variable
size, mid- to upper distribution, and sparing costophrenic angles (109).

New research (26) shows a more grave emphysema type of smoking-
related interstitial issue, with interstitial fibrosis, called airspace enlargement
with fibrosis (AEF). Axial and sagittal images show clustered asymmetric cysts
that are more prominent and irregular than typical honeycomb cysts without
traction bronchiectasis or other signs of fibrosis.

Lymfocitar interstitial pneumonia (LIP), one of the rarest of the
interstitial lung with female predilected (in the fifth decade of life), is associated
with a CT pattern of ground-glass opacity sometimes associated with
centrilobular and subpleural micronodules and perivascular cysts(110). Thus, it
could surlily be included in the group of ILD with a cystic pattern.

Enlarged mediastinal lymph nodes are the mutual element of LIP with
sarcoidosis, a granulomatous disorder of unknown etiology. Thin-section CT of
sarcoidosis findings usually follows a perilymphatic distribution pattern, with a
predilection for the upper and mid-lung fields. Imaging evaluation can be
complicated, as the manifestations are variable and depend on the stage of the
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disease. It is often labeled as the "great mimicker" (111), with a large spectrum
of image features. Symmetric hilar/mediastinal lymphadenopathy and nodules
infiltrate (presumably reflecting conglomerate granulomata) reflect among the
first disease stages. Perilymphatic nodules are mainly grouped along the
bronchial vascular bundles, interlobular septa, interlobar fissures, and
subpleural areas (112),(113). Pulmonary fibrosis represents the end stage-IV,
with central bronchial distortion and diffuse linear fibrotic pattern (typically
radiating away from hila in all directions) (114).

Pulmonary alveolar proteinosis (PAP) is classically associated with
the lung crazy paving sign on CT. The smooth thickening of interlobular and
intralobular septal lines and ground glass opacities, patchy or geographic
distribution, may have a slightly lower lobe predilection (115).

High-Resolution CT is preferred in the radiologic evaluation of
hypersensitivity pneumonitis (HP)- one of the ILDs with known etiology. In
acute HP, HRCT may be normal or show diffuse ground glass or centrilobular
ground glass nodules, poorly defined centrilobular nodules, and areas of air
trapping at the level of the secondary pulmonary lobule with mid- and upper-lung
zone predominance (116). Chronic HP (HPc), fibrotic changes such as septal
thickening, traction bronchiectasis, and honeycombing are seen classically in a
peribronchovascular distribution with a mid- and upper-lung zone predominance.
Airspace consolidation may be seen in chronic HP but is felt to represent
superimposed infection and is not intrinsically related to HP pathophysiology.
The headcheese sign is relatively specific for HP (117).

To better understand how HRCT elements can combine and create
accurate interstitial lung disease models, which can be very suggestive for a
type of illness, a simplified diagram is presented for the most commonly
encountered interstitial lung diseases (fig. 10 (a) and fig. 10 (b)).
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Fig. 10 Simplified representation of a typical HRCT appearance of the most common interstitial
lung disease. Idiopathic pulmonary fibrosis

(taken from (118)

(taken from (119)).

The typical pattern of usual interstitial pneumonia is a predominance of subpleural reticular
elements in the lower lung, traction bronchiectasis, and honeycombs with mild ground-glass
opacities). Nonspecific interstitial pneumonia (subpleural ground-glass opacities, fine
reticulations in the lower lung, fibrotic traction bronchiectasis at the final stage, typically without
honeycomb formation). Hypersensitivity pneumonitis: acute- Centrilobular or geographic ground-
glass opacities and air trapping (mosaic attenuation), chronic: fibrosis with reticulation, traction
bronchiectasis, and possibly honeycombing. Sarcoidosis (mediastinal and bilateral pulmonary
lymphadenopathy, perilymph distribution of the nodes; fibrous, often perihilar, mass, or
honeycombing). Organizing pneumonia (nodule or consolidation, frequently perilobular pattern,
fluctuating).



29

3. IDIOPATHIC PULMONARY FIBROSIS (IPF)- THE
REFERENCE DISORDER FOR PULMONARY FIBROSIS

3.1. THE SPECTRUM OF HRCT FINDINGS IN IPF.

UIP is the histopathological and imagistic pattern of IPF. If IPF is equal
to UIP, vice versa, UIP is not equal to IPF. In other words, IPF diagnosis needs
obligatory UIP models, but the UIP pattern can also appear secondary to
underlying diseases. Patients with fibrotic chronic hypersensitivity pneumonitis,
connective tissue disease (e.g., rheumatoid arthritis, systemic sclerosis,
polymyositis/dermatomyositis), exposure-related ILDs (e.g., asbestosis, drug
amiodarone toxicity), radiation, ANCA-associated vasculitis’s could provide UIP
patterns. HP-UIP and CTD-UIP may be suspected based on their imaging
appearance but are often imagistic and indistinguishable from IPF-UIP. In 6—
10% of IPF cases, PPFE is seen (120), (121). It may be associated with a rapid
decline in lung function, increased risk of pneumothorax and
pneumomediastinum, and decreased survival (120).

Clustering under the UIP framework pattern, we can find four categories
of facets: UIP model, probable UIP, indeterminate for UIP, and considering
another diagnostic (89),(10),(38).

The updated clinical practice guide proposals were assigned and merged
to better understand the UIP spectrum (table). Fleischner's statement (38) and
ATS/ERSJRS/ALAT guidelines (10) validate that honeycombs are a hallmark of
UIP and must be present to make a final thin section CT diagnosis of typical
UIP (fig.11). While (10) associate reticulation with peripheral traction
bronchiectasis or bronchiectasis, at (38), this feature is not mandatory.
Fleischner consensus also mentions the absence of inconsistent features like
cysts, consolidation, and alveolar infiltrates. The typical distribution of UIP is
subpleural and basal dominant, although upper lobe involvement is joint. Despite
heterogeneous distribution, In some cases, the craniocaudal distribution of UIP
can be relatively uniform. Lung fibrosis reflects lung architectural distortion and,
in more severe forms, lobar volume loss with the displacement of the oblique
fissures to posterior segments (122).

Probable UIP also has predominantly subpleural and basal distribution,
often heterogeneous, with reticulation and traction bronchiectasis or
bronchiolectasis (fig.12); (10) suggests that it may also have mild GGO, but it is
not a dominant feature. Instead, Fleischner's statement shows that the
honeycomb cyst formation may be absent. Both assign that reticulation with
some inconspicuous or minor findings suggests an alternative diagnosis, which
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indicates the lesions as indeterminate for UIP. This is inconsistent with UIP but
not suggestive of an alternative diagnosis (123). Also, (10) suggests possible
mild GGO or architectural distortion as distinctive features that do not indicate a
particular fibrotic pattern. This category includes a subgroup of patients with very
restricted subpleural ground-glass opacification or reticulation without noticeable
CT features of fibrosis, for whom there is a suspicion that early UIP or probable
UIP is present. In such cases, it should be set with prone inspiratory views that
the subpleural opacities do not represent dependent atelectasis. Opposite, when
features and distribution of features do not have any specific etiology, it is
genuinely indetermined UIP (fig.13) (10).

Table 5 Comparison between 2018 Fleischner (38) and ATS/ERSJRS/ALAT(10)

HRCT Overlapping ATS/ERS/JRS/A Fleischner Society
diagnosis findings LAT guidelines Statement
Typical UIP Distribution:

-Subpleural and basal
predominant;

-Often heterogeneous, it can
be diffuse

Features:

-Honeycomb cyst formation;
-Reticulation;

- Traction bronchiectasis with -With /without
or bronchiolectasis;

-Absence of features to suggest
an alternative diagnosis

ol CRE IR Distribution:
-Subpleural and basal
predominant;
-Often heterogeneous.

Features:
-Reticulation -May have mild -Absence of honeycombing;
-Traction bronchiectasis or GGO; -Absence of features to
bronchiolectasis suggest an alternative diagnosis
L IBELEH Distribution: -Subpleural and -Variable or diffuse;
for UIP basal -not predominantly subpleural or
predominance basal
Features:
-Reticulation -Possible mild GGO or
-with some inconspicuous or architectural distortion[]

minor findings that suggest an
alternative, non-IPF diagnosis
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HRCT Overlapping ATS/ERS/JRS/A Fleischner Society
diagnosis findings LAT guidelines Statement
Alternative Distribution: -Areas of subpleural sparing
GIER[CEEmE -Upper or mid lung
Predominant;

- peribronchovascular
Features:

- Predominant consolidation;
- Widespread pure GGO
(without acute exacerbation
Distribution: -Perilymphatic
Features:
- Widespread mosaic o O
attenuation;

- Diffuse nodules or cysts

Statement and guidelines in Diagnostic Categories of UIP Based on CT Patterns adapted after (66)ATS =
American Thoracic Society, ALAT = Latin American Thoracic Society, ERS = European; Respiratory Society,
GGO = ground-glass opacityJRS = Japanese Respiratory Society, UIP = usual interstitial pneumonia, CTD =
connective tissue disease, IPF = idiopathic pulmonary fibrosis, (1 ATS/ERS/JRS/ALAT guidelines had other

distributions listed that were different from the Fleischner Society Statement, which included: (a) dilated
esophagus (consider CTD), (b) pleural plague (consider asbestos exposure), (c) distal clavicle erosions
(consider RA), (d) clinically significant lymphadenopathy, and (e) pleural effusions and/or thickening (consider
CTD, drugs).J-Distribution/features that are not indicative of a particular fibrotic pattern; ¥ with substantially
sharply defined lobular expiratory air trapping; [ including micronodules, centrilobular.

An alternative diagnosis should be considered when the distribution is
predominantly in the upper or middle lung or peribronhovascular, with features
suggesting predominant consolidation, widespread pure GGO or mosaic
attenuation, with nodules or cysts. In daily practice, a chest x-ray of ILD
appearance and clinical findings could mimic a suspicion of idiopathic pulmonary
fibrosis. Still, the HRCT pattern suggests an alternative diagnosis of fibrotic lung
disease. Examples comprise bronchocentric fibrosis in the upper lobes or
profuse mosaic attenuation that indicates hypersensitivity pneumonitis, posterior
fibrotic retraction of the hila in sarcoidosis, or widespread ground-glass
opacification with subpleural sparing in NSIP.
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Fig. 11 Axial HRCT of UIP pattern

The Hallmarked honeycombing cyst; has subpleural, basal, and heterogenous distribution; with secondary
traction bronchiectasis and bronchiolesctasis.

Fig. 12. Axial and coronal thin-section CT of probable UIP pattern

Has subpleural, basal, and heterogenous distribution; with reticulation with peripheral traction bronchiectasis and
bronchiolesctasis;-mild GGO

Fig. 13 Axial HRCT of upper and lower lobes marking the indeterminate for UIP pattern;
Has subpleural distribution with mild reticulation in upper lobes and reticulation and GGO in the lower
areas; features and distribution of features do not have any specific etiology-truly indetermined UIP
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3.2. IPF DIAGNOSTIC

The progressive aspect of ILD offers a tantalizing and terrifying challenge:
early and accurate diagnosis can dramatically increase survival rate and life quality
by promptly employing the proper treatment, consequently doubling the survival
rate (124). As previously stated, clinical signs and symptoms overlap, so paraclinical
methods are crucial to diagnosing ILD correctly. However, the more commonly used
investigations, like chest X-Ray (CXR), peripheral blood tests, and spirometry, need
to be complemented with the more specialized High-Resolution Computer
Tomography (HRCT), lung ultrasound, and, in particular cases, bronchoscopy and
surgical lung biopsy (125), (126).

As it was overwritten, IPF is the typical progressive chronic interstitial
fibrotic lung disease, most frequently ILD, with an abysmal prognosis (16). Age
is typically older than 60, and the etiology is unknown (7). Median survival after
diagnosis is 3 to 5 years, with some patients progressing more rapidly or slowly,
surviving more than ten years (38),(10),(127). Early imaging diagnosis of IPF
using thin sections of CT is critical to guide the selection of patients for antifibrotic
drugs (pirfenidone and nintedanib) that can mitigate the decline in lung function
due to the high risk for early death without treatment (7),(10),(40). On the other
hand, the precise ILD diagnosis is essential as well (89),(128), as medication
that is beneficial for one ILD may be highly harmful to another (e.g., steroid
administration in IPF is harmful due to the underlying mechanism of fibroblast
activation and proliferation (129); essentially IPF it is considered to be
unresponsive to “standard” therapies. Despite promising antifibrotic treatment,
currently, no treatment can stop or reverse the scarring of the lungs. The aim is
to slow pulmonary fibrosis progression.

HRCT plays a central role in diagnosing and treating all interstitial lung
diseases, especially fibrotic diseases. In appropriate clinical circumstances,
idiopathic pulmonary fibrosis (IPF) diagnosis can be made without surgical lung
biopsy when HRCT features are consistent with common interstitial pneumonia
(UIP) (130)

A thin-section CT, inspiratory, expiratory, prone sequence is the most
sensitive radiological examination to assess the lung parenchyma for evidence
of ILD. The key anatomical components of the lung parenchyma assessed in
interstitial lung pathology are the interstitium and the secondary lung lobes (SPL)
(66). Consequently, the histologic phenotype, lesion type (primary lesion and/or
overlapping model), and its pulmonary and SPL distributions may compete and
cooperate in developing the precise clinical syndrome.

The future of radiological diagnosis in ILD may be identifying disease
behavior-based radiological phenotypes that predict disease results, which will be the
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cornerstone in determining clinical management (131). Classifying the intrinsic CT
features of fibrosis according to (38) and/or (10) is an essential role for radiologists,
and it may detect progression early and make a significant contribution to the
multidisciplinary debate (MDD) on this vital diagnosis.

According to (26) (132), (89), (133), (134), (135), (136), (122), (137),
(138), (16), a proposed diagnosis algorithm for IPF is as follows (Fig.):

IPF suspicions / or already dagnosed

Find known

mtul:l. D HRCT patterns i poLe ¢

MDD -

|

|

\J
IPF Not IPF
Fig. 14. The proposal flowchart for the diagnostic algorithm of idiopathic pulmonary fibrosis (IPF);

Usual interstitial pneumonia (UIP); Transbronchial lung cryobiopsy (TBLC); surgical lung biopsy (SLB); high-
resolution computer tomography (HRCT); bronchoalveolar lavage (BAL); multidisciplinary discussion
(MDD). [Patients with a radiological pattern of probable UIP can receive a diagnosis of IPF after MDD
without validation by lung biopsy in a proper clinical context (e.g., 65 yr old males, smokers).[JC1BAL may
be performed before MDD in some patients evaluated in experienced centers. # TBLC is the preferred lung
biopsy procedure in centers with appropriate expertise and/or in some patient populations. SLB may be
explained in some patients with nondiagnostic findings on TBLC.
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Even considering the current state of practice, ILD diagnosis is a
developing field. In practice, there is a precise sequential algorithm to diagnose
ILD. Initial clinical evaluation includes history and physical examination, which
can find a potential cause and/or an associated condition leading from the start
to another diagnosis. In many circumstances where a biopsy was once regarded
as required, HRCT can now be used as a substitute. For instance, in certain
patients with IPF, the HRCT appearance may be sufficiently distinctive to obviate
the need for a biopsy (where UIP criteria are met) (7),(139),(140). Conform (26)
Patients with radiological findings of probable UIP can receive a diagnosis of IPF
after MDD without validation by lung biopsy in a proper clinical context (e.g., 65-
year-old male, smoker). In the few remaining instances where a radiological
diagnosis is not possible, In the rare remaining instances when a radiological
diagnosis is not attainable, HRCT is still extremely valuable, but only as a guide
for determining the optimal surgical biopsy site. Even techniques recommend
HRCT for prognostic assessment and illness staging (141),(142),(143) .

The indeterminate UIP pattern or alternative diagnosis on chest HRCT
pattern will lead to a multi-disciplinary discussion (MDD) that might suggest a
lung biopsy and a new MDD post-biopsy result. Some patients could perform
BAL for supplementary assessment before MDD in qualified centers. For lung
biopsy samples in patients with ILD of undetermined type, TBLC is the preferred
maneuver if possible (144). The HRCT and histopathological patterns label the
diagnosis.
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4. ILD COMPUTER AIDED IMAGISTIC DIAGNOSTIC

Computer-aided techniques (CAD) can be broken down into learning and
discovery. Both can be carried out under supervision or independently;
nevertheless, the results of computer techniques are primarily data-based.

Artificial intelligence (Al) is the intelligence displayed by machines, as
opposed to the natural intelligence exhibited by animals and humans. Al
research is defined as the field of study of intelligent algorithms related to
systems that distinguish their environment and take actions that increase their
chances of achieving their goals.

"Artificial intelligence" describes machines that mimic and represent
"human" cognitive abilities related to the human mind, like "learning" and
"problem-solving" based on the concept of rationality (145). An algorithm is a
way of processing data. In other words, artificial intelligence represents
algorithms that train the computer to have its own new algorithms according to
complex rules that are not based on mathematical analysis. They auto-adapted
after they received the data set human input. Subcategories of Al are machine
learning (ML) and deep learning (DL). ML consists of a set of algorithms
designed to improve their performance with the help of training data. The primary
purpose of these algorithms is to predict specific characteristics of the analyzed
data and/or to make independent decisions based on it (without the help of
human input) — to cluster it. This model is generated to fit the analyzed sample
data best. For example, if it receives information about the axial plane HRCT
image of the chest, it processes and later groups which images are part of the
axial section and which are not. Alternatively, clusters the diseases where cough
appears as a common element (146), (87).

Based on the data set provided, DL goes deeper and learns to recognize
autonomously (without human input) based on segmentation rules, the number
of categories in the database, and what features create a category. For the same
example with thorax HRCT, DL could tell which findings belong to the axial
plane, a sagittal or longitudinal image, based on its autonomous algorithm.
Complex neuronal networks (CNN) are the engines that run DL, which is a
structure of algorithms and data (87), (147). Usually, they are used for second
opinions computer-aided.

A relatively new approach uses visual aids in which data is processed
and abstracted in the background to provide valuable clues and condensed
information to allow autonomous human judgments. Complex networks (CN) are
expressive interconnected visual representations and data modeling as
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networks. Clinical and functional data, thoracic HRCT pathways, and disease
networks form structures that can be visually represented as networks (148). On
the other hand, there is clear synergy and dynamism among the elements of
these data sets. The connections between data entities are static and represent
transformation relationships or, better yet, convey the influence that nodes
assert over one another (149), (150). CN represents a quantitative analytic
method that does not influence the outcome as a second opinion but enhances
the medical HRCT judgment as an alternative diagnosis.

The technique used in human-based diagnosis starts with pattern
recognition, defining their location in the lung, gathering this data into an
identifiable disease configuration, and solo throw visualization. The high-
resolution computed tomography (HRCT) detection and diagnosis of diffuse lung
disease are primarily based on the recognition of a limited number of specific
abnormal features, specific combinations or patterns of these abnormalities, one
or more specific distributions of abnormal findings, and the use of basic history
and clinical information.

This is vastly different from the way computer-aided diagnosis (CAD)
works. Most CAD uses heuristics and machine learning with no analytical
process, being interested in the proper classification and not the reasons why
this occurs. A hybrid method, including heuristics and analysis, is described in
(151) to bridge the gap. Computer-based Quantitative assessment of
progression of pulmonary fibrosis can provide a more objective and reproducible
measure of progression than visual assessment (152), (153).

Due to the lung tissue-specific radiation attenuation qualities and
maximal spatial resolution, HRCT, since 2011 (145), has been the central
noninvasive instrument in analysis, offering crucial details and insights that can
lead to diagnosing ILDs (138). The imaging results are analyzed based on
distinct textural patterns in the lung window's distribution and extent. The
evaluation focuses on the picture's grayscale tones (in terms of HU) and
geometrical structures, essentially a repeating pattern-matching challenge,
offering the ideal setting for computer-aided diagnostic (CAD) systems. Texture
recognition is highly accurate when a complex network approach is used
because of its analytic properties (146),(147).

As with any diagnostic tool, there can be intricacies that require a
specialized technician and/or further, more invasive investigations. Furthermore,
this is quite challenging for the practitioner, given that human error is still not
negligible. Substantial inter-observer inconsistency, even between experienced
radiologists, confuses the process (157), (128), (149),(87). The present-day
approach is to try and supplement human analysis of HRCT with automated
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tools, like the CALIPER program (150), or various Al-based tools, like (151),
(152), (153), (154).

With information technology (IT) procedures, CAD allows medical
professionals to comprehend and employ distinct imagistic investigations (155).
The objective is to increase the speed and accuracy of diagnosis, with IT as a
supplement or even an independent diagnostic alternative. (156) The CAD
algorithms are part of artificial intelligence (Al) since they imitate human thought
(157). Essentially, the ILD diagnosis is an algorithm with the following workflow:
If physical examination outcomes and paraclinical studies (chest X-ray, lung
function measures, routine and specialized blood tests) suggest ILD based on a
complete history, an HRCT is conducted (158). The human aspect then
intervenes by validating the quality of the resulting data and, if no issues/artifacts
are discovered, looking for patterns in particular regions. If the data are
conclusive, a diagnosis may be established. Still, if they are ambiguous, a list of
potential diagnoses will be generated, needing more talks and more
sophisticated, invasive investigations. The individual executing these algorithms
is crucial to accurate and rapid diagnosis since they introduce an overall inherent
variance. As CAD can emulate the algorithm, it would be a perfect option for this
step as it would eliminate deviations. Well-conducted research intends to
comprehensively examine how artificial intelligence (Al) enhances ILD
diagnosis, focusing on convolutional neural networks (CNNs) as described in
(159),(160). CNN may reduce human resources and cut the costs associated
with this fatal disease's social and medical elements.
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RESEARCH PART

5. CHAPTER 1: FACILITIES AND PITFALLS FOR USING
CAD FOR ILD DIAGNOSIS

5.1. DEEP LEARNING IN INTERSTITIAL LUNG DISEASE — HOW
LONG UNTIL DAILY PRACTICE

5.1.1. INTRODUCTION

Interstitial lung diseases (ILDs) refer to about 200 distinct lung illnesses
that include inflammation and fibrosis of the interstitium, with associated clinical,
radiological, and pathological characteristics and are significant causes of
morbidity and mortality. (4)

Due to the lung tissue-specific radiation attenuation qualities and
maximal spatial resolution, high-resolution computed tomography (HRCT) is the
technique of choice in diagnosing ILD. The imaging results are analyzed based
on distinct textural patterns in the lung window's distribution and extent. The
evaluation focuses on the picture's grayscale tones and geometrical structures,
which is essentially a repeating pattern-matching challenge, offering the ideal
setting for computer-aided diagnostic (CAD) systems. With information
technology (IT) procedures, CAD allows medical professionals to comprehend
and employ distinct graphical investigations (155). The objective is to increase
the speed and accuracy of diagnosis, with IT providing a supplement or even an
independent diagnostic alternative (156).

The CAD algorithms are part of artificial intelligence (Al) since they
imitate human thought (157). Essentially, the ILD diagnosis is an algorithm with
the following workflow: An HRCT is conducted (158) if physical examination
results and paraclinical studies (chest X-ray, lung function measures, routine
and specialized blood tests) suggest ILD based on a complete history. The
human aspect then intervenes by validating the quality of the resulting data and,
if no issues/artifacts are discovered, looking for patterns in particular regions. If
the data are conclusive, a diagnosis may be established, but if they are
ambiguous, a list of potential diagnoses will be generated, needing more talks
and more sophisticated, invasive investigations. The individual executing these
algorithms is crucial to accurate and rapid diagnosis since they introduce an
overall inherent variance. As CAD can emulate the algorithm, it would be a
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perfect option for this step as it would eliminate deviations. This research will
comprehensively examine how Al enhances ILD diagnosis, focusing on
convolutional neural networks (CNNs).

5.1.2. COMPUTER-AIDED DIAGNOSIS HISTORY

The virtual subclass of an Al component is machine learning (Fig. 1),
which consists of mathematical algorithms used by computer systems to learn a
specific task via experience without explicit human instructions (149). This
advancement is represented by the concept of deep learning (DL), which is
comprised of a multi-layer representation learning architecture.

Through a sensor, the representation stimulates the first layer of
neurons, which activates the next layer through complicated connections.

Artificial Intelligence

Fig. 15 Artificial intelligence progression diagram (Al, artificial intelligence;
CNN, convolutional neural network

Each layer analyzes the representation non-linearly, resulting in an
increasingly complicated schema and a departure from the general task-specific
algorithm for machine learning (161,162). The primary benefit of DL is that it can
improve autonomously and without human input. It can execute arbitrary parallel
computations more efficiently than other algorithms (163,164) from an
application viewpoint. Among other applications, DL is used in visual object
identification (161), voice recognition (165), driving assistance (166), and
language categorization (164).
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Neocognitron combined neurophysiological architecture (162,167,168)
was the first algorithm effectively employed for pattern recognition in 1980. As
shown by the advent of the backpropagation technique in 1989, which enabled
handwritten digit identification and became a landmark reference (167), the key
to effective feature extraction is the design of adequate network architecture.

CNNs demand big, well-balanced datasets and complex algorithms,
which affect processing power and storage capacity (162,163). Krizhevsky et al.
created the Alex Net CNN model by amassing the most extensive training set of
1.2 million pictures. The system categorized the photos into 1000 nature
categories with the lowest error rate possible (168), making it the most advanced
database for training CNNs.

The first neural network to reach superhuman performance in visual
pattern recognition emerged in 2011 when Ciresan et al. employed a deep
neural network on a graphics processing unit to detect photos of traffic signals
(http://people.idsia.ch/juergen/superhumanpattern.html). In the last ten years,
graphics processing units have enabled lower calculation times for complicated
operations in a typical scenario, facilitating the development of CNN (162,169).

As shown in Fig. 2, each CNN has a complicated architecture with an
initial picture input as a pixel array from a receptive field and multiple hidden
computational connection layers (161,170).

The CNN's core component, the convolutional layer, comprises many
weighted individual filters (161). Multiple filter sets detect distinct visual patterns.
Small patterns like corners, lines, and edges are seen before forms and objects.

A CNN needs numerous layer types and communication between them
to function (170). The last step predicts the picture category probabilities. It
determines the active feature class with the most robust and relevant features
(168).

The first CNN Healthcare application goes back to the early 1990s. Lo et
al. used the CNN algorithm to identify lung nodules on chest X-rays, achieving
an 80 percent true-positive detection rate (171). Sahiner et al. (172) employed
CNN:s to distinguish bulk from normal breast tissue on mammograms, achieving
a 90% positive predictive value. In 2008, brain MRIs effectively diagnosed
hippocampal sclerosis (173). Due to the short size of the database and the
simplicity of detecting specific lesions, the high favorable rates seen in these first
investigations are skewed.

There are several obstacles to getting medical pictures for deep learning:

(1) They are difficult and expensive to acquire compared to typical images.
(2) Valid annotation of bio-images requires the assistance of professionals.



42

(3) The scale of the medical database is often inadequate, but state-of-the-art
image analysis datasets (ImageNet, AlexNet, GooglLeNet, VGGNet)
include hundreds or millions of natural image instances.

A possible solution is transfer learning, in which weights from a CNN
trained on a natural dataset are transferred to a CNN learned on a separate
dataset (170,174). Despite the stark differences between natural photography
and medical images—the former being colored and the latter being grayscale—
all have the same descriptions. Histograms of directed gradient and scale-
invariant feature transform have been utilized effectively to segment and detect
medical images. Bar et al. (175) corroborated this in chest pathology using CNNs
trained on nonmedical image datasets to analyze 93 chest X-ray pictures. The
area under the curve (AUC) was 0.93 for identifying right pleural effusion, 0.89
for detecting heart enlargement, and 0.79 for classifying normal vs. abnormal
chest X-rays. All values are significantly over 0.5, indicating that the model is
accurate.
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layer layer layer connected
layer

Output classes

Y Y
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Fig. 16 Convolutional neural network architecture
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CNN applications in bio-imaging research flourished in segmentation,
detection, and classification applications beginning in 2014, including lung
nodule detection and classification, colon polyp detection, coronary calcification
detection (169,176), skin cancer classification (177), knee cartilage
segmentation (178), brain tumor segmentation (179), and breast lesions
classification (180,181).

The goal is to acquire more precision and superior performance than
human counterparts. Even though artificial intelligence research has been
primarily focused on neurology (157), oncology, and cardiovascular diseases
(170), the first three leading causes of death, the chest imaging field is also of
interest for lung nodule detection and classification (182,183), tuberculosis
lesion classification (184), lesion detection (185), and parenchymal pulmonary
disease classification (153).

5.1.3. INTERSTITIAL LUNG DISEASE-SPECIFIC CAD

Reticulation (RE), honeycombing (HC), ground-glass opacity (GGO),
consolidation (CD), micronodules (MN), and emphysema (EM), or combinations
of the above, are typical ILD patterns in high-resolution (HR) CT scans. The
challenge arises when the outcomes are contradictory or ambiguous (Fig. 3).
CNNs require large image sets because normal lung or distinct tissue categories
may display similar appearances (Fig. 3a, b or c, d), yet considerable changes
across people for the same tissue class may be observed (Fig. c—e).

Anthimopoulos M. et al., excluding unclear lung regions and the
broncovascular tree, experienced radiologists annotated and employed 120
HRCTs for training and testing a CNN. Due to the hyper-parameters generated
for the ILD pattern characterization, the suggested algorithm outperformed the
state-of-the-art approaches (Alex Net, VGG-Net-D). Due to the overlapping
appearance, the combination of GGO/ RE and individual GGO and RE patterns
also displayed a significant misclassification rate. An accurate description of
texture distinct from gray-scale intensity value has clinical implications in
distinguishing between idiopathic pulmonary fibrosis (IPF) and non-specific
interstitial pneumonia. In response to these obstacles, Christodoulidis S. et al.
(174) introduced a CNN architecture that could extract the textural variation of
ILD patterns. Just a two percent improvement in CNN performance was realized,
using transfer learning from many non-medical source datasets. The significant
drawback in (174) is using CT scans instead of HRCT.

The few applications that employ HRCT, such as (151,152,154), all use
CNNs for classification. Even though Li et al. (152) and Li et al. (154) use a
proprietary architecture in an unsupervised method, their performance is inferior
to that of other possibilities (174,186).
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5.1.4. HOW SOPHISTICATED SHOULD THE CNN BE?

In pattern classification, Kim et al. (199) compared shallow learning (SL)
to deep learning (DL). In their work, they employed four convolutional layers and
two fully connected layers to create a CNN architecture that improved accuracy
from 81.27 to 95.12 % by increasing the number of convolutional layers. This
reduced the misclassification rate between ambiguous instances such as HC/RE
(Fig. 3e) or NL/EM and highlighted the need for more complicated DL
approaches in ILD diagnostics. Differentiating between distinct lung tissue
patterns on HRCT images is difficult, particularly when utilizing limited samples
for region-of-interest (ROI)-based classification. This might lead to mismatches
since lung tissue may have a similar look among distinct tissue categories
despite substantial heterogeneity between people within the same category.

In addition to grayscale differences, image processing also includes
object identification, independent of other factors. Wang Q. et al. (187)
presented a multi-scale rotation-invariant CNN method to address this bias,
considering that patient movement during scanning and breathing may impact
lung volume size. This method employs a Gabor filter, which evaluates the
precise frequency and directions in a confined area, simulating the human visual
brain. This algorithm's performance accuracy categorizes all ILD patterns above
85 percent, reaching 90 percent for N, GGO, and MN patterns. Similar to the
earlier work, increasing the number of CNN layers has reduced the error rate.
This technique is flawed by the exponential complexity of the Gabor filter
implementation, which requires considerable computing resources.

All other research (174,186—188) that classified ILD patterns used a
patch-based approach to picture representation. Their drawback was the tiny
picture portions (31 pixels), which led to the loss of fine detail. In addition, the
image patch had to be manually annotated, resulting in a laborious procedure
for radiologists. Recognizing the difficulty in manually identifying ROIls for
automated pulmonary CAD systems, Gao M. et al. (189) attempted an
alternative classification method for ILD patterns.
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Fig. 17 Difficult ILD patterns
a) NL in subject 1. b) EM in subject 2. ¢) RE in subject 3. d) HC in subject 4. ) Mixed HC/RE in subject 5.
f) Mixed RE/GGO in subject 6. Source: “Victor Babes” Database

Similar to emphysema quantification (190), but with more autonomy, they
suggested a technique for global picture identification based on grayscale level.
This viewpoint caught more information and used slice-level picture labels or
tags without defining ILD areas. Rescaling the CT picture in Hounsfield units
(HU), the approach expresses three distinct attenuation scales concerning the
lung ILD pattern: low attenuation pattern (HU = 1400 and 950) for EM, high
attenuation pattern (HU = 160 and 240) for CD, and typical lung attenuation (HU
= 1400 and 200). The patch-based categorization obtained 87.9 percent
accuracy compared to the holistic approach's 68.6 percent accuracy. The
findings are deceptive: the holistic technique correctly recognized EM but had
difficulty distinguishing between normal lung (NL), MN, and CD patterns. The
ideal EM categorization needs more investigation, maybe using a mixed-method
technique. The dataset continues to be the Achilles' heel of each approach.

Bae HJ. et al. (191) offered an intriguing technique by generating an
unlimited number of arbitrarily distinct ILD patterns from 2D HRCT images, which
improved the classification accuracy of CNN for lung tissue patterns. The
algorithm avoided over-fitting, stabilizing accuracy loss for the validation set and
offering various ILD patterns. The accuracy of a particular area of interest or the
whole lung was 89.5 %, which was greater than the accuracy of traditional CNN
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data augmentation (82,1%) and comparable to the human ability. The most
effective ROIs were NL, GGO, RE, and EM. The algorithm's randomization of
ILD patterns cannot technically guarantee a hypothetically ideal level of
accuracy. In addition, the algorithm's repetitive nature necessitates excessive
computational resources, making it unsuitable for a typical computer.

5.1.5. IDIOPATHIC PULMONARY FIBROSIS - THE CHALLENGE OF ALL
ILDS

HRCT must diagnose and treat all interstitial lung illnesses, particularly
fibrotic lung disease. In a clinically suitable setting, idiopathic pulmonary fibrosis
(IPF) can be diagnosed without a surgical lung biopsy when HRCT signs of
typical interstitial pneumonia (UIP) are present (89). Based on expanding data,
a Fleischner Society statement broadened this recommendation to cover
individuals with suspected UIP symptoms (38,192).

Despite this paradigm, the radiological evaluation of ILD remains
challenging due to high inter-observer variability, especially among experienced
radiologists (128,149). This might be a barrier in clinical practice since imaging
expertise is not always available, particularly at non-academic sites. This could
lead to delayed diagnosis and unnecessary interventional procedures, such as
surgical lung biopsies, which may present unacceptable risks, especially for
elderly patients with severe disease.

Walsh et al. (153) presented a CAD that could be quickly installed on
conventional computer equipment to solve these restrictions. A total of 1157
HRCT scans were pre-processed to generate a maximum of 500 distinct four-
slice montages (concatenations) per CT scan, yielding a dataset of multiplied
images with 420,096 unique montages for the training algorithm and 40,448 for
the validation set. This investigation employed the convolutional neural network
Inception-ResNet-v2 as the particular neural network architecture (193,194). An
experienced thoracic radiologist classified each HRCT into one of three
categories: UIP, potential UIP, or inconsistent with UIP (89), with the
corresponding diagnostic prediction outcome. Neural network training becomes
an interactive process using a specific optimization approach to change the
network's internal parameters and eliminate scan errors. Tested on 139 HRCT
(68,093 distinct test montages), the algorithm's accuracy was 76.4 %, with 92.7
% of diagnoses falling inside one group. The program evaluated 150 four-slice
montages in 2.31 seconds.

Another approach (153) was evaluated clinically on a second sample of
150 HRCT scans with fibrotic lung disorders. Numerous patients with IPF,
chronic fibrotic hypersensitivity pneumonitis, or connective tissue disease-
related fibrotic interstitial lung disease were assessed by 91 thoracic radiologists
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(not participating in the training process). The average performance vs. the
radiologists' assessment was 73,3 % (93.3 % within one category). The median
diagnostic accuracy of thoracic radiologists in this sample was 70.7%. This
technique is a useful diagnostic tool for IPF since it provides consistent, nearly
immediate reports with human-level accuracy. Since the UIP pattern is
associated with high mortality rates in ILD, the distinction between UIP and non-
UIP is crucial. The algorithm and the majority opinion of the radiologists
produced the same prognostic differentiation (p = 0.62) between these two
groups (195). When Fleischner criteria for IPF diagnosis were considered, a
solid interobserver agreement was seen between the algorithm and the
radiologists. CNN is not programmed to detect basal honeycombing as a
distinguishing feature of UIP. Still, it appears capable of learning to do so. This
autonomous activity may provide a foundation for identifying new imaging
biomarkers for fibrotic lung disease. The difficulty with this algorithm is that it
only evaluates one tissue subtype per slice, thereby removing any mixed
patterns. However, the fact that it is easily accessible and requires only a small
amount of local resources is a huge advantage.

5.1.6. DISCUSSION

The lack of big imaging datasets for training is a significant obstacle to
developing accurate deep-learning algorithms for diagnosing fibrotic lung
disease. An international collaborative effort is required to establish a centralized
image repository to solve this issue. In addition, the photos must be standardized
using a suitable format, HRCT. There are too few algorithms that deal with
certain picture types, such as (151-154), and since 1-mm-thick slices might
reveal lesions that would be overlooked, this format is essential. Since the
images will likely be collected from numerous sources, the resolution, grayscale,
and annotations must also have a standardized format.

The "Next Generation" of clinical Al is a CNN that can be placed on any
computer station and is accessible to non-academic institutes. In the realm of
ILDs, specifically, Al can aid in the differentiation and early diagnosis of
individuals with the most severe type, namely IPF. Early identification of IPF will
result in tailored antifibrotic treatment that significantly prolongs survival and
minimizes acute exacerbations, which are not only fatal but also expensive
(195—-199). To meet such lofty standards, a hybrid algorithm should be devised.

A combination of several CNNs may be the answer to decreasing the
expenditures associated with social and healthcare elements (217,218) since
specific algorithms, such as (202), display exquisite accuracy in certain areas.
The CNN combination might have various configurations and begin creating the
same input or have similar configurations and produce distinct inputs. Even more
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intriguing would be merging many Al approaches, such as CNN, with clustering
and classification algorithms, maybe in parallel or sequential stages. The
objective is to minimize local area computing regardless of the technique,
leaning toward a cloud architectural style.

Legal considerations such as data privacy and security become crucial
in this instance, and security protocols may impede communication between the
local and computational nodes.

5.2. COMPUTER-AIDED TECHNIQUES

In every computer application, one must remember that a computer is
essentially a machine that performs what it is programmed to do; therefore,
picking the appropriate program is essential. One must specify inputs, desired
outputs, and generating methods to choose a program.

In ILD diagnosis, the inputs are those available during the
multidisciplinary discussion: patient-generated information (the initial clinical
evaluation, high-resolution computerized tomography (HRCT), and biopsy) and
literature- or practice-generated information (ILD classification, diagnosis
criteria, statistical and historical data). The outcome is either (ideally) a diagnosis
for the current patient or (at the very least) a valuable recommendation for the
clinician to consider.

Early computer applications in medical diagnosis began in the 1990s,
with an initial precision below or, at best, equal that of medical practitioners. As
Computer Science progressed, so did their precision (176).

The ethical implications of employing computers for a second or even
first opinion, how much one should rely on them, whether or not their engineer
developers are responsible for their outputs over time, and to what extent must
at least be stated here. Who is responsible for any medical act if a computer
performs it? This examination is beyond the scope of this paper (which is to
highlight ILD management-specific methods). Still, before implementing such
algorithms, their performance and reliability enhancements (200) should be
weighed against their legal consequences, as discussed in (201).

Returning to the technical features of ILD management computer-aided
applications, two types can be defined: the first analyzes data and provides a
conclusion based on it, whereas the second conjugates complex data sets and
displays its depiction, allowing humans to generate a conclusion.

The first category employs the computer as a second opinion maker,
focusing on learning and reasoning applications. In contrast, the second
category primarily uses the computer as an enhancer, inventing new methods
to visualize facts that help humans understand them better.
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Figure 18 gives a classification of ILD-specific algorithms along three
axes: conclusion maker (machine/human), goal (finding, learning, and
reasoning), and human supervision dependence (supervised, unsupervised,
reinforced).
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Fig. 18 ILD-specific algorithms

Figure 18 provides a fast reference for selecting an algorithm class. For
instance, if we want to construct a diagnosis model that recognizes existing
patterns, learning algorithms are the obvious choice because they learn from the
data provided. Nonetheless, if a new diagnostic parameter is desired, the
discovery section contains the necessary algorithms. When we need a
consensus between inputs and rules, we employ reasoning algorithms,
sometimes allowing for uncertainty or statistical judgments. Consequently, these
algorithms help develop a diagnosis or treatment algorithm with quantifiable
input rules.

As its name suggests, supervised machine learning entails training a
model by providing it with input data and the expected output values (known
beforehand). The algorithm then produces a model (formula) that fits the input
data and may be used to analyze new input data (202).
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The two most prevalent applications of supervised learning are linear
regression and classification. In unsupervised machine learning, no training set
instructs the algorithm on generating results; instead, the algorithm is
responsible for discovering commonalities across data. They are utilized chiefly
for grouping, anomaly detection, and neural networks. K-means clustering,
hierarchical clustering, DBSCAN clustering, and the hidden Markov Model are
among the most common unsupervised ML methods.

The reinforcement learning (RL) algorithms are based on a trial-and-error
methodology. The learner is not told what to do but instead learns good and bad
acts based on the rewards or punishments it receives in response to its activities.
Consequently, it will always choose the movements that maximize its benefits
(203).

When clinicians are faced with a lengthy therapeutic procedure, these
algorithms can be used in conjunction with medical imaging for medical
diagnosis. Multiple application directions exist for reinforcement learning
algorithms, including ILD, dynamic therapy regimes, automated medical
diagnostics, and more general domains (204,205).

The following parts will focus on the most ILD-specific applications
implemented, as shown in Figure 18.

5.2.1. REGRESSION

Regression models are primarily concerned with establishing the
relationships between input and output values, where input values represent a
variety of characteristics of the analyzed data. Continuous values constitute the
output values. Linear regression, logistic regression, polynomial regression, and
support vector machine(SVM) are among the most frequently used regression
models. SVM can also be used for unsupervised machine learning; however,
ILD-specific applications have yet to be developed.

The primary distinction between linear and logistic regression is in their
respective applications. Linear regression is used to determine continuous
values that are reliant on the input data. This algorithm aims to estimate the
training data best by fitting a straight line to the data. Logistic regression is used
for classification, which involves assigning input data to one of two categories
with a specified probability or level of confidence. Both algorithms have been
utilized successfully in the medical industry to diagnose various diseases. Given
the vast number of biomarkers and indications collected by medical devices and
software, it can be challenging to establish meaningful connections between all
these factors. A regression method can improve data interpretation and
correlation if these indicators are viewed as interdependent characteristics.
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5.2.2. LINEAR REGRESSION

For the identification of ILD, linear regression models are widely used. It
has been demonstrated that such models can incorporate multiple features
(some of which are directly measured through lung function testing, while others
are calculated or observed through medical imaging), including pulmonary artery
(PA) diameter, mean pulmonary arterial pressure (mPAP), HRCT-determined
ILD severity, forced vital capacity (FVC), transfer factor of the lungs for carbon
monoxide (TLCO), age, sex, and body surface area (BSA). By utilizing these
algorithms, parameters such as PA diameter have been shown to play a
significant part in the diagnostic process, revealing a novel association with ILD
(206,207).

5.2.3. LOGISTIC REGRESSION

On the other hand, logistic regression models can be used to predict the
chance that certain factors influence disease. In the case of elderly pneumonia
patients, for example, factors such as mean age, pulmonary severity index,
concomitant disorders (diabetes mellitus, high blood pressure), and QTc interval
prolongation could be used to predict the chance of mortality (208).

These regression algorithms are often utilized with medical imaging
techniques, resulting in a more precise diagnosis. (209,210). Also, techniques
for estimating the risk of breast cancer have been created using mammography,
artificial neural networks, and logistic regression.

Another regression algorithm, random forest, was used to concentrate
on pulmonary regions from distinct topographic regions by analyzing and
simultaneously extracting data from the three sections (upper, medial, and
lower), thereby significantly increasing the probability of correct detection of ILD
lesions (211).

5.2.4. HIDDEN MARKOV MODELS

Hidden Markov Models are frequently employed in the decision-making
process, predicated on the premise that a patient is in one of a finite number of
health states at any time. These states are referred to as Markov states.

K-means clustering, hierarchical clustering, and hidden Markov model
algorithms have been used frequently in evaluating disease progression,
including Chronic Obstructive Pulmonary Disease (COPD), Interstitial Lung
Disease (ILD), tuberculosis surveillance, Huntington's disease, and Diabetes
Mellitus. (212-214).
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5.2.5. NEURAL NETWORKS

Neural networks are algorithms that attempt to replicate human neuron's
function by developing a complicated architecture that begins with an image as
input and divides it into numerous layers (convolutional, fully connected)
arranged in a particular sequence. These methods have been utilized
successfully for lung nodule detection and classification (182,183), tuberculosis
lesion classification (184), lesion detection (185), and parenchymal pulmonary
disease classification (153).

Typical ILD patterns readily obtain a classification accuracy of 85.5%
(188), whereas other methods, such as (202), attain near-perfect accuracy in
particular circumstances.

The number of HRCT-specific applications is restricted, e.g., (154,215)
and, despite enhancements, alternative implementations, e.g., (161,170),
provide significantly superior performance.

The most challenging aspect of ILD neural networks is not the algorithm
but rather the training set (161,170). Large, well-balanced HRCT imaging
datasets reveal lesions that would otherwise go unnoticed, but they are not
publicly available and are insufficiently extensive (153,154).

5.2.6. COMPLEX NETWORKS

The human capacity to monitor the volume of all available data begins to
lag. No single researcher can be entirely up to date, and they cannot manually
analyze the accuracy and authenticity of information because each research
center pursues its investigations, develops its data, and, as a result, its findings.
This necessitates big storage media and rapid processing power (205).

Information stored in a specified data format is one of the medical
domains in which software could be helpful. Even though standard concepts
have a few common medical representation formats (216), meta-data and
informal information are always kept in a human language unique to each
institute or researcher. Each entity is allowed to use the format that best suits its
purposes.

On the other hand, whenever one wishes to begin modeling data based
on existing medical databases, the researcher must typically 'cure' the data or
submit it to a 'harmonization' process that either restructures the data or removes
the unnecessary details that could slow down any subsequent data analysis (217).

Processing power is another method of medical science using IT tools.
Given the massive quantity of available data, modeling it would require
significant time without assistance. This is where processing power could
intervene in several areas, such as modeling data according to data type-
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specific models (218), producing prediction algorithms based on statistics and
probabilities (219), and programmatically investigating various scenarios based
on data confidence level, etc.

There have been various ways regarding data modeling and visual
display. Visualizing and interpreting healthcare data employing complex
networks has been increasingly popular (239). This is an alternative technique
to the all-too-familiar bar charts, graphs, pie charts, and squares schemas, and
the reason for this is that this style of representation offers several additional
characteristics (220,221).

Due to the nature of data, a couple of crucial intrinsic traits make network
science an excellent tool for medical research: interconnectivity and link
dynamics.

Not only are the relationships between data entities static, but they also
indicate transformation relationships or, more precisely, they convey the effect
that nodes exert over one another. A hospital's patient flow is an example of data
that could be represented as a complex network. Metabolic processes and
elements are potentially viable for network representation data source usage.

The more information a graph represents, the more a viewer can
comprehend at a glance instead of verifying many spreadsheets or examining
simple figures or statistics.

A vast selection of network visualization tools and techniques regarding
data representation are available. Bioinformatics' most popular visualization
tools include Gephi, Cytoscape, NetworkX (Python library), iGraph (R and
Python), and Pajek. In addition to providing a network visual representation,
these programs also implement various visualization techniques from which the
user can select: Force Atlas 2, Fruchterman-Reingold, Kamada Kawali,
OpenOrd, Circular layout, etc. (73),(74). This multiplicity of possibilities
ultimately results in distinct perceptions of the same network. This means that
the user does not have to worry about organizing components on a blank canvas
but instead utilizes pre-programmed algorithms for this purpose and then
watches the finished product to better understand the data.

Depending on their primary purpose, network visualization tools fall into
two groups. The first group of tools comprises those with a visually appealing
user interface and an intuitive mode of use. This consists of Gephi, Pajek, and
Cytoscape. The second group emphasizes efficiency and rapid delivery of
results through a scalable design. This first group demands higher technical
expertise from the end user, who may need specialized support to fully harness
these technologies' benefits. This is the cost of speed-oriented and highly
customized network visualization tools such as NetworkX and iGraph, which lack
a visual interface.
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5.2.7. LAYOUT ALGORITHM SELECTION

There are several network visualization techniques, depending on the
necessity and the intended output: force-directed algorithms, circular layout, arc
layout, and an adjacency matrix. However, not all are suitable for all medical
data types and sizes. Matrix layout is almost too mathematical and abstract to
perceive interactions clearly. In contrast, arc layout and simple circular layout
become too congested for massive networks. Force-directed layouts are
adaptable, scalable, and, most importantly, functional from a medical standpoint.
However, some ordering between nodes is lacking in this scenario, so the user
can quickly determine the node rankings or hierarchy visually (148).

We can consider the following four factors while determining the optimal
network layout:

+ The network's characteristics - the available data attributes

+ The desired features to emphasize - what the user hopes to achieve

by employing a specific layout.

» The layout algorithm's specifications, or what the algorithm claims to

perform most effectively.

* Previous research or performance evaluations.

Fortunately, medical data possesses a variety of network features and
data properties. If we take a metabolic network comprised of genes and proteins,
it is safe to state that most of these networks are dense; they contain many
edges and nodes. Node size (which may be proportionate to its degree or the
number of connections), node color (which may reflect a certain cluster or
function/role it performs within the network), edge width, and others may all be
used in such a network to highlight the relevance of each piece.

Depending on the researcher's demands, the desired output may be a
perfect clustering — to delimit groups of nodes with a high degree of similarity,
the delimitation of odd nodes, or the discovery of patterns that would otherwise
be undetectable without an appropriate visual representation (Fig.19).

While the first two aspects rely solely on the user's judgment, the third
and fourth aspects — algorithm specifications and review documentation — are
based on available documentation provided by their creators, as well as the
experience of others (user feedback) who have tried, tested, reviewed, and
shared their results with the community.

There are several studies on the performance and effectiveness of
visualization tools and layout algorithms, and the data sets, which frequently
include medical data, are diverse (241).
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Fig. 19 Bio Diseasome network rendered with a hybrid layout algorithm

In fact, layout selection is a trial-and-error process in which
experimenting with layouts may provide extraordinary outcomes based on the
network's characteristics. Cluster separation, node spacing or proximity, varied
node colors and sizes, and edge length and weight are all visual cues that show
and emphasize the connectedness between network nodes (Fig. 20).
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Fig. 20 DNA network of genes with respiratory function - Force Atlas 2 layout
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Beyond the characteristics of each layout, the discussion focuses on the
effectiveness and speed of these algorithms. Given the amount of data that must
be processed and shown, case studies have demonstrated that some of them
cannot handle such a workload beyond a certain magnitude and volume. It may
take hours to build a proper layout if the user does not possess the necessary
processing capacity for such activities; alternatively, the application may crash
before completing the rendering process. Metabolic networks, such as genetic
pathways, are examples of dense networks with many nodes and edges.

There is an apparent distinction between them, and choosing user-
friendly technologies is costly.

Although there have been studies on the performance of such tools
(222,223), from a performance standpoint, there does not appear to be a clear
preference for a particular algorithm among medical professionals; in fact, some
studies do not even mention the type of algorithm used to generate one specific
network. At best, it may describe the clustering algorithm employed for
community detection.

Once a viable visualization algorithm has been identified, the researcher
does not devote further effort to a comparative investigation of numerous similar
tools but focuses on achieving the best possible outcome with the chosen
method (Fig. 21).

a) SARS-CoV2 target network (STN) b) a) Lung disease-gene v-eb_uof.k (LDGN)

@ SARSCovtarget
@ Neigrosurmood hos prtein

Fig. 21 Using multiple layout algorithms throughout the identical research material
- reproduced with permission from (243)
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Recent studies on the COVID-19 disease demonstrate that researchers
may also employ numerous methods (and algorithms) to provide multiple
perspectives for the same network. However, the emphasis is always on medical
gain (224). The significance and utility of the infrastructure employed to produce
the results cannot be quantified, and as a result, the knowledge and experience
are not communicated to the consumers of such studies.

The computer can provide two forms of assistance: a second viewpoint
and the visualization and aggregation of data. When choosing an aid, one must
select the objective: learning, discovery, or reasoning, and the means of doing
this: various predictive analytics or visualization techniques.
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6. CHAPTER 2: A NOVEL METHOD FOR LUNG IMAGE
PROCESSING USING COMPLEX NETWORKS

6.1. INTRODUCTION

Commonly, pathological problems of the lung interstitium begin with an
overly severe inflammatory process that limits alveolus expansion. Over time,
the inflammatory strain is replaced by permanent stiffness caused by scar tissue,
which in turn generates additional inflammation, resulting in deteriorating clinical
consequences. This interstitial lung inflammation and fibrosis cycle is the
unifying characteristic of the Diffuse Interstitial Lung Diseases (ILD) group (225).

Historically, this diverse group of more than 200 separate illnesses that
damage the lung parenchyma has encountered recurrent difficulties regarding
nomenclature, categorization, and staging (2). Due to having the same
pathological conditions, the clinical and, to a lesser extent, paraclinical criteria
employed in ILD diagnosis tend to overlap; nonetheless, unique disease sources
must be distinguished in order to effectively prescribe a treatment plan. There is
no better example in this case than ldiopathic Pulmonary Fibrosis (IPF), which
has a median survival rate of 2-5 years but whose clinical diagnosis is easily
confused with the much more common Chronic Obstructive Pulmonary Disease
(COPD), which has a much better prognosis (mild cases have a survival rate of
10-20 years) (226).

The progressive feature of ILD provides the difficulty of an early and
precise diagnosis, which nearly doubles the survival rate and enhances life
quality when the appropriate therapy is administered (124). As previously stated,
clinical signs and symptoms overlap; paraclinical approaches are essential for
diagnosing ILD. The commonly used investigations, such as chest X-ray (CXR),
peripheral blood tests, and spirometry, must be supplemented with more
specialized imagistic tools, such as High-Resolution Computed Tomography
(HRCT), lung ultrasound, and, in some cases, bronchoscopy and surgical lung
biopsy (126,158).

Since the 2011 update to the imagistic diagnostic guidelines (145), the
HRCT has been the principal noninvasive device in analysis (138), providing
essential information and insights that can lead to a rapid diagnosis (145). As
with any diagnostic instrument, complexities may necessitate a highly skilled
professional or further invasive tests. In addition, high inter-observer variation,
even among experienced radiologists, complicates the procedure
(87)(128,148,149). The current strategy is to enhance human HRCT
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interpretation with automated techniques, such as the CALIPER software (150)
or different Al-based tools. (153,154).

This study begins with a brief comparison of how computers and humans
perform diagnosis. A unique approach is then introduced and evaluated from a
biological and system science standpoint.

6.2. USING HRCT — HUMANS & COMPUTERS

In diagnosing ILDs, medical professionals begin with HRCT pattern
recognition of a limited number of specific abnormal findings, particular
combinations or patterns of these abnormalities, one or more discrete
distributions of abnormal findings, and the use of basic clinical and historical
information. The radiological diagnosis of ILD is based on patterns and
connected to the underlying histology. Future ILD detection is planned to
incorporate behavior-based radiological phenotypes, which will determine
clinical care (131). A diagnosis may be made by dividing main lesion types into
four categories: reticular pattern, nodular pattern, high attenuation, and low
attenuation. Their overlap and relationship with other lesions (51) (Figure 23)
and their location throughout the lung and in the lung's fundamental anatomical
and functional unit - the secondary lobule - are significant.

Thin-section CT, inspiratory, expiratory, and prone sequences are the
most sensitive radiologic examination for detecting ILD in the lung parenchyma.
The interstitum and secondary pulmonary lobule (SPL) are the primary
anatomic components of the lung parenchyma, as evaluated in IPF (66). As a
result, histological phenotypes and lesion types (primary lesions and/or their
overlapping model) and their lung and SPL distribution may compete and
collaborate to reflect an accurate clinical condition. For instance, Usual
Interstitial Pneumonia (UIP) is the prototypical progressive fibrotic phenotype;
self-sustaining progressive fibrosis is also observed in individuals with
progressive  Non-Specific Interstitial pneumonia (NSIP) or chronic
hypersensitivity pneumonitis (PHc).

Compared to Computer Aided Diagnosis (CAD), this (human) method is
radically different. Most computer-aided design (CAD) systems employ
heuristics and machine learning without an analytical process, focusing on
appropriate categorization rather than underlying causes. This method, used in
(153,154), does not allow for any evaluation of severity or forward-movingness.
Commercial and scientific programs that take a more anatomy-based approach
(228—230) may require additional input data, such as Pulmonary Function Tests
(PFT) (e.g., a caliper). Their output solely reflects the aberrant volume. No
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qualification is provided on the severity of the lesion in this publication. Among
the benefits of employing such technologies are relatively quick processing
times, confirmed findings, good, reproducible accuracy, and the ability to help
medical workers effectively.

The HRCT slices contain non-visual apparent information encoded as
Hounsfield Units (HU) that can improve the relationship between gradient and
textural differences between pixels. The geometric interweaving of varied
densities creates textures. In light of the fact that texture recognition has a very
high degree of accuracy when a complex network approach is used
(146,146,147), this article aims to construct a complex network strategy tailored
for ILD.

6.3. MATERIALS AND METHODS
6.3.1. LOT SELECTION

7~ N\ RN RN

Dr. Victor Babes’ Infectious Diseases
and Pneumoftiziology Clinical Hospital
Timisoara Database

N— N— ‘\I/

= I

30 patients with CT exams and 30 patients with normal CT imaging
exploratory function tests with the that were considered the control
diagnosis of ILD; group;

N S N

30000 imaging exams stored in

(DICOM) format 60 scans were selected

To select the eligible patients, we accessed the 'Dr. Victor Babes'
Infectious Diseases and Pneumoftiziology Clinical Hospital Timisoara database
was recorded in their private cloud repository. Digital Imaging and
Communications in Medicine (DICOM) format was used to store more than
300,000 imaging exams, from which 60 scans were chosen based on the
inclusion criteria listed below: 30 patients with CT exams and exploratory
function tests for the diagnosis of ILD (diffuse interstitial lung disease); 30
patients with normal CT imaging who served as the control group; all participants
gave written approval for the use of their HRCT images. The Ethical Committee
also authorized the study.
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6.3.2. IMAGING PARAMETERS

General Electrics (GE) Healthcare Optima 520 16-slices with 32-slice
reconstruction were used for all examinations. The scanner comprises a 0.5 mm
x 16 detector-row, allowing for a total z-axis length of 8 mm. Variable tissue
penetration resulted in variations in the radiation dose administered to every
patient, whose settings remained constant.

The following HRCT parameters are shown in Fig. 22:

Slice thickness: 1,25mm
Scan time: 1 second

kv: 120

mAs: 130

Collimation: 2,5mm

Matrix size: 768X768
Field of View (FOV): 35 cm

Window: lung window (if ILD is suspected
Fig. 22 HRCT parameters

The slice is smaller than the 1.5mm advised by the Radiology Working
Group of the Pulmonary Fibrosis Foundation to improve lesion detection and
increase diagnostic accuracy, both of which are critical for ILD diagnosis. The
spatial resolution (pixel spacing) for these settings is 0.74 mm.

The HRCTs were stored in the DICOM format because it is the
universal format for encrypted medical imaging with a high transmission
capacity. The DICOM technique encodes the patient's personal information,
CT data, technical parameters, and medical images, making them difficult to
interpret without a specialized application. The primary criterion for analyzing
image data was the tissue densities/opacities, which were computed by
adopting the principles of the Hounsfield scale. Hounsfield Units (HU) are
widely used to quantitatively measure radio density and tissue tensile
strength and aid in interpreting CT scans.

Image reconstruction depends on tissue parameters relating to X-ray
beam penetration and attenuation to establish a grayscale picture system.
According to the attenuation range of tissue absorption, these grayscale
intervals span from roughly -1000 HU (air) to 3000 HU (metals such as silver
and steel). This transition is represented by grayscale and uses the zero HU
density of purified water as a reference point.
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Table 6. HU intervals from Lin Li et al. and Maria Paola Belfiore et al. reports

These values are specific for the General Electrics Healthcare Optima 520(9,10,11).

Pulmonary zones HU intervals
Emphysema [-1024, -977)
Normal pulmonary parenchyma [-977, -703)
Ground-glass opacities [-703, -368)
Others (crazy-paving, pleural fat) [-368, -100)
Consolidations [-100, 5)
Others (interstitial vessels) >5 HU

According to the HU intervals depicted in Table 6, each element of this
lesion will have a corresponding value. The honeycombing pattern is a
combination of cysts (emphysema) and reticulations (consolidations); the
network of reticular fibers is a consolidation analog, as ground-glass opacities
are already shown in the table.

The intervals representing emphysema, normal pulmonary parenchyma,
ground-glass opacities, and consolidations were chosen for the analyzed
diseases.

6.3.3. IMAGE LOT SELECTION

For each HRCT lot, a 65x65 pixel region was manually selected from one
of the HRCT slices. The explanation for selecting these regions manually rather
than processing the complete image at once is based on the concept of isolating
and evaluating the most relevant samples for the selected diseases. After disco-
vering certain trends, applying the findings on a bigger scale would be sensible.

To eliminate intra- and inter-observer variability, the most pertinent area
for diagnosis was determined by a majority intersection of selections made by
four independent observers: two radiologists (ten + and five years thoracic
experience) and two pneumologists (15+ and 5+ years ILD experience), since
at least three specialists from the National Fibrosis Center of the 'Dr. Victor
Babes' Infectious Diseases and Pneumoftiziology Clinical Hospital Timisoara
had already annotated the photos for the ILD-affected batch; these picks offer
an additional diagnosis confirmation.

A combination of factors determined the size of this sample area:

1. The more pixels a sample includes, the more processing power is
necessary to convert it into a matrix and a complicated network. This also affects
the processing time, ranging between seconds and minutes.

2. This region should be vast enough to capture significant lung tissue
for the diagnosis but small enough to avoid any other forms of tissue that might
"contaminate" the sample or add unneeded complication.
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3. The selected square region must include at least one functioning
component of the lung (secondary pulmonary lobule) in its whole and any form
of the disease it may be affected with. Given that the area of a secondary lobule
ranges between 1 cm2and 2.5 cm2and that the pixel spacing within the selected
HRCTs varies between 0.70 and 0.80 (this setting is machine-dependent and is
encoded in the HRCT metadata), a sample rectangle of 65 x 65 pixels should
typically contain at least one secondary lobule. Example: The actual pixel
spacing value for the lot is PS = 0.74 mm, which is obtained as a DICOM
parameter. Given that the area of a secondary lobule is 2.5 cm? x 2.5 cm?, the
minimum acceptable DICOM sample size for a secondary lobule is 25/ 0.74 =
33.7837 mm. The sample area is nearly doubled to obtain at least one secondary
lobule in its entirety. Similar investigations with a cropped DICOM sample of only
11 x 11 px have been conducted by other researchers; however, it is unclear
why this number was selected (259,263).

6.3.4. IMAGE PROCESSING METHOD

Each selected sample is subsequently processed with the aid of a
Python program designed for this specific purpose. The DICOM slices are
cropped to the predetermined size (65 x 65 px) using a dedicated CT library,
pydicom, around the area of interest.

The program is an algorithm designed to carry out the following
operations:

1. lterate across HRCT slice sets (DICOM files);

2. Crop each image to a 65 by 65-pixel square;

3. Analyze the specified topic from three perspectives:

a. Convert pixel gradient to Hounsfield Unit value using the following
formula: HUv = rescaleSlope * PxGradient + rescalelntercept,
where rescale Slope and rescalelntercept are constant values
dependent on the CT equipment and embedded within the DICOM
metadata, and PxGradient is the color code of a pixel.

b. Separate all emphysema-like tissue, GGO (Ground Glass Opacity),
and consolidation densities in the cropped picture while excluding
all other tissue types (Figure 22);

c. Separate each HU strip from the sample onto its layer (Figure
22);

4. Create complex networks from each layer;

5. Analyze connection, proximity, and node distribution (pixels);

6. Determine patterns of healthy and diseased lungs;



64

(b) (c) (d) (e) (f)

Fig. 23 Splitting CT sample into layers (a) original CT, (b) sample crop, (¢) combined Emphysema,
GGO, Consolidation layers, (d) Emphysema Layer, (¢) GGO layer, (f) Consolidation layer.

Assume the following in order to change each of the crop layers
(emphysema tissue, GGO tissue, and consolidation) into complex networks
(Step 4):

1. Each pixel represents a network node whose color gradient
determines its value.

2. It is assumed that two pixels are linked if the following requirements
are met:

e Within the crop, the radial distance (Rd) between them is Rd 4 pixels.
Assuming each pixel (Px) is the origin O of a circle with radius r = 4, every
other pixel (Py) within the circle region may be considered linked.
Alternatively stated: E(Px,Py)|d(Px,Py)4.

e The difference between Px and Py's gradient is less than or equal to 50
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Given the abovementioned requirements, the algorithm constructs
groups of nodes and connecting edges and exports them as different files for
each layer. Thus, each lung HU layer is transformed into a complex network and
evaluated from the perspective of degree distribution.

Paragraphs 6.3.4.1 and 6.3.4.2 expand on the selection methods for
threshold values.

6.3.4.1. Radial distance selection

In order to identify the radial distance at which lesions are single or
linked, several tests have been conducted with values ranging from 1 < Rd < 8
pixels. Less than three pixels resulted in a sparse network with relatively few
connections, indicating that a tiny number of comparable pixels were found in
close proximity to one another. This results in a comparatively high number of
clusters with less than three nodes. Compared to other Rd values, it does not
offer much information on the lung profile.

Alternatively, with Rd values more than 5, while the algorithm is more
integrative, it becomes excessively liberal owing to the complicated network
process of node attachment, which links comparable nodes without anatomical
justification.
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Fig. 24 Degree distributions for various Rd
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Defining a circle with a radius between 5 and 8 (<5 r <8) enables a
better-linked network, fewer clusters, and a distinct degree distribution
(Figure 24).

In light of the previous experiment, it has been determined through
multiple trials that the optimal Rd value is Rd 4 pixels, which is large enough to
generate dense clusters but small enough to make a difference in the degree
distribution, particularly when comparing normal lungs with affected lungs. This
is supported by (264), which employs a starting size range of 3—17 mm for
detectable lesions in a clinical environment. The observed empirical conclusion
accords with their findings because an Rd = 4 pixels equals a metric value of
4*0.74 = 2.96 mm. Section 6.3.4.t pertains to model fit in the context of network
science; there is more discussion of the distribution fit using a logarithmic or
power function.

6.3.4.2. Gradient difference threshold

Regarding gradient difference, the selected delta decides whether two
pixels are close enough in grayscale to be considered neighbors. While a delta
D value of 50 encompasses the entirety of the Emphysema strip, it assists in
clustering the network for the GGO and Condensation strips. This rule is
summarized as follows:

|G(Px) = G(Py)| <D,

Where G(Px) and G(Py) are the gradient values of two pixels, Px and Py,
respectively, and D = 50 is the maximum delta threshold at which two pixels are
not considered connected.

Each network layer can ultimately be defined as N(P, E) where E=E(Px,
Py)|d(Px, Py)Rd and |G(Px-G(Py)|D, where P is the collection of vertices or
pixels, E is the set of edges, Rd = 4, and D = 50.

6.4. RESULTS

All HRCTs (of both healthy and diseased lungs) were processed using
the previous procedure. Subsection 6.4.1 demonstrates the different stages for
a single normal and ILD-affected patient (Figure 25), whereas subsection 6.4.2
describes an additional lot analysis.
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Fig. 25 Algorithm processing -step 1- sample selection (a) Normal sample (b) ILD (IFP) sample

6.4.1. NORMAL AND ILD CASE SAMPLE RESULTS

Sample cropping to 65 x 65 pixels is the initial stage.

The subsequent phases entail slicing everything into layers and
transforming those layers into intricate networks. The emphysema layer is
inspected initially (Fig 26).
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Fig. 26 Emphysema processing
(a) HU filtered layer for the normal sample; (b) HU filtered layer for the ILD sample
(c) Complex network built according to the proposed algorithm corresponding to the normal sample, Fruchterman
Reingold render layout, node sizes proportional to node degrees, edge width invariant (1.5 pixels). (d) The complex
network was built according to the proposed ILD sample, Fruchterman Reingold renders layout, node sizes
proportional to node degrees, and edge width invariant (1.5 pixels). (€) Degree distribution of the normal sample
network (f) Degree distribution of the ILD sample network.

Next comes the ground glass layer, where the most significant variances
occur. Visually, the distributions in Figure 27 a and b may appear random, but
the network degree distribution reveals an entirely different story: a logarithmic
distribution for the normal process and a polynomial distribution for the IFP.
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Fig. 27 GGO processing

(a) HU filtered layer for the normal sample; (b) HU filtered layer for the ILD sample; (c) Complex network built
according to the proposed algorithm corresponding to the normal sample, Fruchterman Reingold render layout,

node sizes proportional to node degrees, edge width invariant (1.5 pixels). (d) The complex network was built
according to the proposed ILD sample, Fruchterman Reingold renders layout, node sizes proportional to node
degrees, and edge width invariant (1.5 pixels). (¢) Degree distribution of the normal sample network (f) Degree

distribution of the ILD sample network. Equations for curve fit and R2are also presented on the relevant
distributions.

Lastly, there is the consolidation layer shown in fig. 28.
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Fig. 28 Consolidation processing

(a) HU filtered layer for the normal sample; (b) HU filtered layer for the ILD sample; (c) Complex network built
according to the proposed algorithm corresponding to the normal sample, Fruchterman Reingold render layout,

node sizes proportional to node degrees, edge width invariant (1.5 pixels). (d) The complex network was built
according to the proposed ILD sample, Fruchterman Reingold renders layout, node sizes proportional to node
degrees, and edge width invariant (1.5 pixels). (¢) Degree distribution of the normal sample network (f) Degree

distribution of the ILD sample network. Equations for curve fit and R2are also presented on the relevant
distributions.
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6.4.2. ADDITIONAL LOT ANALYZATION-RESULTS.

Individually, variations can be rather distinct, and the analysis of the
complete image lot offered the difficulty of assessing network metric importance

in a larger context.

A metric based on degree sequences is typically preferred for measuring
the entropy of network invariants. Adding a measurement for the network size is
difficult due to the discrepancies outlined in the previous subsection.

Figure 29 displays three measures for balancing network complexity and
size metrics: total count (the degree sum), average count (average degree), and

maximum degree.
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To further examine these results, the distributions of normal and ILD

patients were displayed individually, adding another data layer (Figure 30).
Concerning normal patients, a distinction was made between those diagnosed

before and after the covid period. As for those with ILD, particular iliness groups

were highlighted.
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Fig. 30 Distributions of normal and ILD patients
(a) Normal population plotted based on average degree. Class 0 is the normal population investigated prior to
COVID-19; class 1 is cases diagnosed as normal in the pandemic era (b) the ILD population plotted based on
average degree. Class 2 is UIP, 3 probable UIP, 4 UIP, emphysema, 5 organizing pneumonitis (OP), 6
hypersensitivity pneumonitis (HP), and 7 sarcoidosis.

A few outliers in an otherwise highly tight distribution will be evaluated

further in the discussion section.

6.5. DISCUSSION

As mentioned at the outset of the research, the objective was to develop
a complex network-based model using HRCT lung imaging. Then, an evaluation
must be conducted to see how well this model corresponds to Network System

Science and Medical Science frameworks.

6.5.1. NETWORK SYSTEM SCIENCE

One method to characterize network systems based on real-world data
is by their degree distributions and, more specifically, by the function type that
best fits these distributions. Recent studies, such as (231), demonstrate that the
power and logarithmic functions characterize these systems. For normal
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patients, empirical data, such as those provided in Figure 28, Figure 26e, Figure
27e, and Figure 28e, demonstrate a logarithmic distribution at the appropriate
biological resolution (Rd = 4). Compared to the logarithmic function, the fit of the
power function on all normal patients, even when the radius was varied to
account for biological variances, is shallow.

Figure 31 compares the relative distances between lung structures to the
different distribution fits. Mathematically accurate but biologically inaccurate
because 1 and 2-pixel separation correspond to a 0.74 mm to 1.48 mm gap,
which is insignificant.

1.00
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0.70
0.60
0.50

0.40

Fig. 31 Average coefficient of determination (R?) for logarithmic and power distributions relative to
radial distance (Rd).

As proposed in (232), one possible explanation for this result is that
biological systems with feedback have a power distribution, whereas a
logarithmic distribution characterizes those without feedback. As the lung is an
open-loop system, its distribution should follow the logarithmic model, as
demonstrated by our model.

As seen in Figures 30f, 31f, and 32f, the distribution of pathological lungs
is better described by a polynomial function, not a logarithmic one. Literature
findings indicate that proliferative processes have polynomial distributions
(233,234), and as the investigated ILDs feature proliferative inflammation and
fibrosis, they may be compared to the literature processes. Indeed, the origin of
proliferation is not always a virus, but histopathological propagation still follows
the same rules.
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Depending on the type of pulmonary injury, the investigated population's
degree of function can range from (138,235) for the study lot. This necessitates
more investigation with sufficient data to link the degree of the polynomial
function to the type or complexity of disease a patient experiences. Since lung
disorders manifest as a composition of the three-axis (Emphysema, GGO
(ground glass opacity), consolidation, these three components may change from
case to case. Just the existence of a disease has been established, not its
particular form. To be able to relate the complexity of a disease to a certain
degree of a polynomial function, it is necessary to do a more in-depth
investigation using many big datasets.

Figure 29 demonstrates that the discrepancies between ILD-affected and
normal networks are distinct and can be measured by calculating a standard
deviation for each patient data series. The data are shown in Figure 11 for all
three network metrics investigated (highest degree, total count, and average
degree) for each HU band, and the combined pathological HU bands
demonstrate a distinct distinction between diseased and normal networks.

90% 188 8L14 956 198 6153 587 189 5923 616 162 567 LI

10% 438 40283 1896 366 9074 949 4185 35842 1762 524 19815 92
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M: Total Av  Max Total Av  Max Total Av Max Total Av
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o o

d count count deg count count deg count count deg count count
Emphysema+GGO + Emphysema GGO Condensation
Condensation

Fig. 32 Relative percentage of standard deviation for ILD vs. normal lungs on all the pathological
HU bands Fig.32 shows the maximum degree, total count, and average degree. Absolute values
are also given on each data point.
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In conclusion, these results demonstrate that the established model is
accurate and appropriately reflects the underlying process that determines them
from a system science standpoint.

6.5.2. MEDICAL SCIENCE

To accurately mimic the biological system, the suggested technique must
account for various anatomical and, more crucially, pathological lung
characteristics. In Figure 30a, the normal patients are represented and
categorized before or during the pandemic, related to their examined period.
There are three post-covid instances with greater GGO and consolidation
values: NC13, NC14, and NC15. According to their clinical data, NC13 and
NC14 are recovering from severe COVID-19, which would explain their artifacts.
NC15, on the other hand, has a unique history, as this inquiry was conducted
before the clinical manifestation of COVID-19 when the PCR test was negative.
Two days later, the patient had severe COVID, which was verified by a positive
PCR test. Despite the doctor's original diagnosis, the system did find an anomaly
in this instance. This suggests that such an algorithm may detect early changes
in a patient's lung texture and, if necessary, give prompt treatment. The clinical
data for the NC group did not reveal any further outliers, as confirmed by our
model.

In the pre-covid (NN) group, outliers may emerge from patient
characteristics such as smokers, asthmatics, or post-infectious individuals
recovering from illness. For example, NNO6 and NNO3 (Figure 30a) are the only
two heavy smokers in the normal group who were certified as normal by the
radiology team.

Pathological and non-pathological processes are not discrete but
relatively continuous, as demonstrated by the model's depiction of their proximity
to the notional boundary of the normal zone. Therefore, the granularity provided
by the proposed method improves traditional CT interpretation and includes
information that is easily missed by the human eye. To demonstrate the
applicability of this model in the disease process, a case of a patient with IPF
and emphysema is described below (Figure 33).
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Fig. 33 Stepwise analyze HRCT patterns.
(aQ)HRCT slice under analysis (b) Sample 1 (c) Sample 2 (d) Degree distribution for sample 1 on the emphysema
layer (e) Degree distribution for sample 2 on the emphysema layer (f) Degree distribution for sample 1 on the GGO
layer (g) Degree distribution for sample 2 on the GGO layer

The degree distribution of sample 1 reflects the emphysema bubble
identified in the same sample. Nonetheless, both samples have comparable
inflammation (the GGO layer distributions), demonstrating the underlying iliness,
IPF. In this instance, the proposed approach has successfully dealt with
overlapping patterns.

Regarding the diseased and normal case distributions shown in Figure
29, there are a few instances where the pathological points are pretty close to
the normal ones. As demonstrated in Figure 30b, these examples belong to OP
upon closer inspection (organizing pneumonitis). The OP is the typical response
to lung lesions throughout the healing process, most frequently due to a lung
infection, although it can also occur after radiation therapy, inhalation damage,
tumor, and medication toxicity. HRTC assessment may reveal a variety of
manifestations, including nodular imaging and an uneven GGO pattern.
However, peripheral bilateral consolidation is the most common (atoll sign)
(64,236). Patients that overlap the normal group are (near to being) cured;
therefore, the algorithm grouped them appropriately with the normal patients.
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Fig. 34 Box plot for ILD (left) VS Normal (right) for complex network parameters (a) maximum
degree (b) total count (c) average degree

Comparing healthy lungs to diseased lungs from a statistical standpoint
is difficult due to the diversity of ILD characteristics and the small lot size/disease
class. A two-sample t-test assuming unequal variances was undertaken to
compare normal and ILD samples to demonstrate the overall validity of the
approach and model. The results, summarized in Table 7 and Figure 34, indicate
that measured p is less than 0.05 (3.97x10-17, 8.52x10-23, and 5.31x10-9) and
observed t is more significant than critical t (1.98, 1.99, and 1.98), thus rejecting
the null hypothesis; that is, being 95% CI that differences between groups are
not due to chance.

Table 7. Statistical comparison

Maximum degree Total count Average Count

ILD Normal |ILD Normal |[ILD Normal
Mean 15.96875 |7.032258 |846.5692 |7.1 51.65253 |32.53397
Variance 39.45933 |3.365591 (206084.5 |3.334483 [362.9068 |113.4483
Observations 30 30 30 30 30 30
Hypothesized Mean Difference |0 0 0
Df 82 64 92
t Stat 10.49451 14.9084 6.288591
P(T<=t) one-talil 3.97E-17 8.52E-23 5.31E-09
t Critical one-tail 1.663649 1.669013 1.661585
P(T<=t) two-tail 7.93E-17 1.7E-22 1.06E-08
t Critical two-tail 1.989319 1.99773 1.986086
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A proper comparison of illness phenotypes would require considerably
more extensive research. Nevertheless, the objective of this paper was to
determine if the complex network model adequately reflects the biological
process and whether the quantitative evidence supports this conclusion. Further
research is required from a qualitative Medical Science standpoint, although the
results are encouraging.

6.5.3. COMPARISON WITH OTHER HRCT ANALYSIS METHODS

This section compares this approach to those that already exist.
Compared to the standard, established approach of assessing HRCT by
human radiologists and physicians, the suggested method is almost too
straightforward. The whole medical study is not restricted to the HRCT; it will
almost always require clinical data and, frequently, additional paraclinical
procedures. Regarding modality, the human analysis employs a difficult-to-
reproduce combination of analytical and empirical methods ("clinical sense"),
and its illness progression measurement is mostly subjective (128,128,148).

There are both commercial and research CAD approaches. Caliper
(228), the most well-known commercial method, does not rely solely on
HRCT; it also requires a method to quantify lung expansion, such as PFT. It
is an incredibly efficient, objective, stand-alone method for measuring lung
disorders. The suggested approach is significantly slower, taking an
estimated median of 2 minutes for each sample for all three layers, or 242
minutes per entire slice and 3872 minutes per patient. The time figures are
measured on a typical computer running a single-threaded application.
Amdahl's law shows that there is room for improvement with certain
restrictions. This deficiency requires improvement to attain maximum
analytical potential despite the information provided being more diverse than
Caliper because of the complicated network technique.

Research-stemmed approaches, such as those from (229,230), and
those based on machine learning, such as (151,154), use only the HRCT, but
how they measure the disease is nonexistent in most cases and volumetric
in others. Most machine learning techniques focus on accurate categorization
and pattern recognition rather than quantifying it. In addition, the time element
is undefined mainly for any of these techniques, making evaluation
impossible.

Table 8. provides an overview of these comparisons in aggregate.
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Table 8. Methodology comparison

Just . - Works
HRCT Analytical Empirical alone Measurement
Y (“clinical __
Doctor N Y sense’) Y Subjective
. Yes, 1 dimensional
Caliper (257), N, PFT Y N Y size
Zrimec (258,259) Y Y N Mostly Maybe
Machine learning Y N Y Maybe Maybe
Proposed model Y Y N N Yes, 3 dimensional

Unlike the methods mentioned, the proposed method provides a
mechanism to quantify afflicted lung regions mathematically. Using network
features, it can quantify and qualify a pathological process along three axes; it
cannot function independently and requires many more examples to enable
accurate classification techniques.
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7. CHAPTER 3: ENHANCING IMAGISTIC INTERSTITIAL
LUNG DISEASE DIAGNOSIS BY USING COMPLEX
NETWORKS

7.1. INTRODUCTION

A vast and diverse category, diffuse interstitial lung diseases (ILD),
includes about two-hundred different pulmonary diseases that cause
inflammation and fibrosis in the lung parenchyma to variable degrees (9,158).
Despite the best efforts of a multidisciplinary team, ILD can be challenging to
diagnose and treat since they share many symptoms and indications with other
conditions but develop in distinct ways (16,237). The most common form of
diffuse interstitial lung disease (ILD) is idiopathic pulmonary fibrosis (IPF), a
progressive fibrosing intra-alveolar lung disease (PF-ILD) with an abysmal
prognosis and an elevated risk of premature mortality without treatment (7,158).

Although high-resolution computer tomography (HRCT) and biopsy
should serve as the basis for diagnosis, the absence of the biopsy sometimes
necessitates relying exclusively on a vision for an accurate diagnosis (7,158).

Computer enhancements and medical skills are synergistic and precise
methods, as are recent advances in computer-aided diagnostic (CAD)
procedures (151,153,215). Some patients are challenging to identify due to
heterogeneous patterns of lung damage and/or interobserver variability, which
is essential even among experienced radiologists (87).

7.2. ILD EARLY DIAGNOSIS

In particular, when relying on a single HRCT, early diagnosis of some
diffuse interstitial lung disorders is challenging. Having access to many imaging
examinations spread across time allows for particular findings and patterns
characteristic of the ILD to form, which improves the accuracy with which the
initial diagnosis may be predicted (22). This is complicated because the course
of most ILDs varies over time depending on whether inflammation is present
(which has a high potential for reversibility) or fibrosis is prominent. In contrast,
the course of some, like IPF, is indisputable.

In addition to HRCT imaging, functional lung investigation is essential for
ILD diagnosis, monitoring, and prognosis. Spirometry studies for pulmonary
function often reveal restrictive dysfunction, with a poor forced vital capacity
(FVC), in ILD. Recent research (238), Refs. (239,240) suggests that the DLco of
patients with diffuse parenchymal lung disorders corresponds with HRCT results
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and is related to the degree of lung involvement (240—242). Notably, DLco
diminishes before FVC, giving it a valuable diagnostic tool for the early detection
of lung injury.

Although composite index predictions for ILD have been proposed
(243,244), such as the modified ILD-GAP score (Gender, Age, Physiology, ILD
subtype), integrating clinical-functional elements (respiratory functional tests-
DLco, FVC), they typically generate a mortality prediction model (284). They are
utilized after the diagnosis has been confirmed rather than as an early diagnostic
indicator.

7.3. ILDS EVOLUTION AND IMAGISTIC DIAGNOSIS

ILD is pattern-based and associated with the underlying histology (131).
If the progression of IPF is unquestionably fibrosis, the progression of other ILDs
is substantially more variable.

Travis et al. (17) categorized longitudinal behavior patterns for ILD
progression into five groups. These types of phenotypic clusters in fibrotic ILD
can be subdivided into three patterns: stable non-progressive fibrosis following
removal of a trigger (e.g., ILD—drug related), irreversible stable under treatment
fibrosis (e.g., mycophenolate mofetil therapy in connective tissue disease-
associated ILD (24) and chronic hypersensitivity pneumonitis (HPc) (25), and
progressive irreversible Other non-fibrotic ILD clusters may be reversible and
self-limiting (respiratory bronchiolitis-associated interstitial lung disease (RB-
ILD)) or reversible with progression potential (e.g., cellular non-specific
interstitial pneumonia (NSIP) and some fibrotic NSIP, desquamative interstitial
pneumonia (DIP), and organizing pneumonia (OP)). This most recent
longitudinal behavior pattern (9) necessitates short-term observation to validate
treatment response and long-term surveillance to guarantee maintained
improvements. (245)

Fibrotic phenotypes necessitate regular, long-term monitoring of the
evolution of HRCT imaging to appropriately manage the specific case by
maintaining the status, avoiding progression, or decreasing progression. The
presence of fibrosis is a defining feature of a group of progressive lung disorders,
including IPF and progressive pulmonary fibrosis (PPF) (246).

In terms of radiography, ordinary interstitial pneumonia (UIP) is the
prototypical progressive fibrotic phenotype, although self-sustaining progressive
fibrosis is not limited to patients with IPF; progressive NSIP or HPc phenotypes
should also be considered (247). According to the recent consensus from the
meeting of the American Thoracic Society, European Respiratory Society,
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Japanese Respiratory Society, and Asociacion Latinoamericana de Térax, PPF
was defined as the presence of at least two of the three criteria (worsening symp-
toms, radiological progression, and physiological progression) within the past year
in a patient with an ILD other than IPF and no alternative explanation (26).

Despite the current inclination to merge the management of probable UIP
and (typical) UIP (26), it is essential to distinguish the various kinds of pulmonary
fibrosis when defining the accurate prognosis (e.g., a patient with a probable UIP
pattern has fewer acute exacerbations and more prolonged survival compared
to patients with a typical UIP pattern (248,249).

7.4. COMPUTER-AIDED DIAGNOSIS

Quite a few techniques-based approaches to computer-aided diagnosis
for lung HRCTs are available or in development. Whether based on artificial
intelligence, neural networks, or machine learning (153,215), these software
solutions cannot capture the dynamics of a pathology's evolution. HRCTs are
evaluated statically, with no prognosis of the patient's health condition. In
addition, some of them, such as CALIPER, require additional information, such
as tests or respiratory data, to produce a correct result (e.g., lung volume
affected), albeit extrapolated in a pretty small timescale.

The novel 2022 guide (26) normalizes the use of CAD in disease pattern
recognition but emphasizes the need for programs that provide improved
prognosis and, most critically, early objective characterization of any sort of lung
abnormalities (incidentally identified or otherwise).

Several of these techniques take a more in-depth approach, such as
examining lung patches of a specific size (154). Still, none genuinely change the
approach to ILD early detection and classification by precisely determining the
pace of lung deterioration and/or the affected lung volume.

The complex network approach (146) may give hitherto untapped
insights by combining pattern matching and mathematical methods. This paper
evaluates a novel complex network technique in ILD-centered imagistic
applications.

7.5. HYPOTHESIS TO BE EXPLORED

This research investigates the practical application of a complex
networks (CN) strategy based on (159) and its applicability to early detection
and/or support/enhance diagnosis by providing a quantifiable progression meter.
This is especially noteworthy considering that worldwide guidelines (26) have
lately changed the emphasis to antifibrotic medications for nearly all progressive
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ILDS, not just IPF. Therefore, early identification of the presence of progression
and a measurable and not subjective progression indicator is crucial (35,36).
The first hypothesis asserts that the CN algorithm accurately quantifies
ILD progression.
Second Hypothesis: New methods for early detection are made possible
by the CN algorithm.

7.6. MATERIALS AND METHODS

7.6.1. LOT SELECTION

The private "Dr. Victor Babes" Infectious Diseases and Pneumotftiziology
Clinical Hospital Timisoara National Fibrosis Center database selected 65 ILD
patients with multiple scans and 31 patients with normal lungs.

The following inclusion criteria were in place:

» Each patient was diagnosed by a minimum of three pulmonologists with
five or more years of experience in ILD/IPF.

« Each CT satisfies the criteria for HRCT, with constant characteristics
across the lot (further described in Section 7.6.2).

» All pathological patients have imagistic surveillance for at least one year.

+ Additional data are provided for each investigation, including DLco, FEV,
age, gender, and clinical outcome.

+ All CTs are annotated with comprehensive CT descriptions prepared by
center specialists following the MDD.
Exclusion criteria included patients refusing to return annually for
imaging follow-up.
+ Patients with poor-quality HRCT images exhibit artifacts or slices thicker
than 1.5 mm.

+ Presence of severe associated pathology, such as liver cirrhosis,
neurodegenerative illness, neuropsychiatric disease, severe heart
failure, etc.

+ Absence of freely expressed consent (observation sheet and/or lack of
discernment)

The database query covered the period from 2012 to 2021; all results
were confirmed by lung specialists who contributed to developing it.
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The ages and sexes of the lots were comparable, and they all legally
consented to use their data for academic reasons, and the Ethics Committee
approved this research.

For each patient's physiological data (age, sex, smoking status), pulmo-
nary function tests (PFT)—such as forced vital capacity (FVC) by spirometry, were
performed. The diffusing capacity of the lungs for DLco was studied alongside
HRCT annotations. The quantitative dynamic HRCT pictures of patients were also
provided, and four pneumology experts reviewed their case histories.

Since each scan in the database is already annotated by at least three
experts, it was possible to define very selective criteria for the ILD lot: typical
HRCT appearance of the most frequently encountered interstitial lung
diseases in which overlapping primary lesions create models for idiopathic
pulmonary fibrosis (IPF), non-specific interstitial pneumonia (NSIP),
hypersensitivity pneumonitis (HP), sarcoidosis (S), and organizing
pneumonitis (OP) (OP). To reduce the scope, the selected primary lesions
were reticulation and consolidation (collectively called band C), emphysema,
and cysts (defined together as band E). These lesions exhibit different
imagistic absorption rates, allowing for categorization, as described in
Section 7.6.3.

The HRCT region of interest was identified by a radiologist with a
decade or more of experience in the imagistic diagnosis of ILDs in
collaboration with the inputs of other specialists. The selected imagistic
characteristics were representative of IPF (29 patients; 44.62%), NISIP (16
patients; 24.62%), OP (8 patients; 12.3%), S (8 patients; 12.3%), and HP (4
patients; 6.15%). Since the morphological pattern of IPFs represents 55% of
idiopathic interstitial pneumonia, the selected cases exhibited the typical
interstitial pneumonia pattern. Thus, subpleural with peripheric distribution
and an apicobasal gradient (predominantly basal) of reticulations,
bronchiectasis, and end-stage "honeycombing" cysts with limited ground
glass opacification (38,66) were assigned. Combined pulmonary fibrosis and
emphysema (CPFE) is a form of IPF characterized by a low survival rate,
coupled pulmonary fibrosis, and emphysema (250).

In NSIP cases, a cellular type characterized by subpleural ground glass
opacification and fine reticulations was seen (251). Moreover, instances with
reticulation, traction bronchiectasis, and architectural distortion due to fibrosis
were selected.

Centrilobular or geographical ground glass opacification, poorly defined
centrilobular nodules, and air trapping (mosaic attenuation) were lesions
observed in acute HP patients (116), with mid- and upper-lung zone
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predominance. Chronic HP patients with fibrosis with septal thickening—
reticulation, traction bronchiectasis, perhaps honeycombing, and headcheese
sign (varying degrees of ground-glass and considerable mosaic attenuation due
to sparing of secondary lobules) (117) were selected with caution.

The lot displayed perilymphatic micronodularity in sarcoidosis. In
addition, the lot was chosen based on reticulation and/or honeycombing (252)
in the sarcoidosis fibrotic stage.

The OP patients presented with Dbilateral patchy airspace
consolidation/ground-glass opacities, with or without tiny nodules, and a
characteristic perilobular pattern and fluctuation (97,253).

7.6.2. IMAGING PARAMETERS

On the General Electrics (GE) Healthcare Optima 520 CT, the patients
were evaluated with constant settings utilizing sixteen 1.25 mm thick slices
reconstructed with high spatial frequency at 32. The scan was completed in 1
second with the following parameters: 120 kV, 130 mAs, and a 2.5 mm
collimation. The field of view was 35 cm, and the matrix size was 768. Due to
tissue penetration, the radiation dose was altered as required. 90% of the
sample was examined in a prone posture, while the remaining 10% was
examined in a supine position. Digital Imaging and Communications in Medicine
(DICOM) has been used to store examinations in the cloud storage of the afore
mentioned National Fibrosis Center database.

7.6.3. SELECTING THE PATHOLOGICAL IMAGISTIC ALTERATIONS

The literature defines four categories of pathological imagistic lung
alterations: the reticular pattern, the nodular pattern, high attenuation (ground
glass opacity, consolidation, atelectasis), and low attenuation (emphysema,
cyst, air trapping), whose distribution, overlap, and association with other lesions
matter concerning the secondary pulmonary lobule (SPL) and the segmentation
of lung regions (51,254).

The attenuation range of X-ray beam tissue absorption, measured in
Hounsfield units (HU), and reflected in the grey tones of the image, can aid in
stacking various diseases. General Electric Healthcare Optima 520 literature
(58,62,255) indicates that, for the employed CT apparatus, three HU bands can
contain all of the lung mentioned above alterations: band E [-1024, -977], band
GGO [977, 703), and band C [100, 5].

On band E, emphysema appears as polygonal or rounded low-
attenuation areas devoid of walls (307). On the same band, cysts are round
circumscribed areas of lucency or low attenuation with a diameter greater than
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or equal to 1 cm, surrounded by epithelial or fibrous contour and typically
presenting discrete walls (67).

GGO refers to a homogenous area of increased lung opacity (a process
that partially fills the airspaces) in which the increased opacity does not obscure
the underlying bronchial and vascular systems. Due to the presence of fluid,
cells, and fibrosis, GGO may be the outcome of air space disease (partial filling
of the alveoli) or early interstitial lung disease (fine thickening of the interstitium
or alveolar wall, i.e., fibrosis) (82). This design has its own HU band, making it
easier to select.

Consolidation is denser than GGO, and from a strictly visual perspective,
it appears in ILD (256) as a visually defined compact opacity. The network of
intersecting line opacities known as the reticular pattern is on the same HU band
as consolidations. The reticulation appears to result from interstitium injury,
resulting in the thickening of the intralobular and interlobular septa of the
secondary pulmonary lobule (38), which is pathologically mirrored by varying
degrees of inflammation and fibrosis.

The primary lesions in the ILD appearance may exist alone in imaging
practice. Still, they are typically observed in overlapping combinations, forming
genuine models that may be typical or less so for a particular ILD entity
(257,258). Mosaicism (259), head cheese pattern (260), and crazy paving
pattern (261) are examples of this overlap, but the honeycombing pattern, which
is a mixture of cluster cysts (E band) and reticulations (C band) (262), is more
significant for this study work.

Pathologically, honeycombing is the ultimate stage in the transition of ILD
to fibrosis, accompanied by architectural deformation, traction Bronchiectasis,
and the creation of cystic layers (64,82). Therefore, an algorithm that separates
these lesions into distinct layers can improve the data.

7.6.4. COMPUTER-ENHANCING THE DATA

Multiple stages comprise the transformation of DICOM pictures by the
analyzed algorithm (35): First, DICOM images are evaluated, and each pixel is
translated to its equivalent HU unit. Then, depending on the required HU bands,
only pixels corresponding to those bands are retained, while all others are
eliminated. The remaining pixels are separated into layers based on their
respective HU band, resulting in a different image for each layer. The resulting
images are then transformed into complex networks according to specific
predefined attachment rules, similar to the conversion of grayscale images into
complex networks presented in (147,263,264): nodes with similar HU values
(within the range of 50 HU units) and closer than 4 px apart are considered to
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be linked, whereas all noncompliant nodes are detached. In other words, any
two visual locations in the lung that are relatively close together and have a
similar color (density) are most likely part of the same type of tissue, regardless
of whether it is healthy or diseased. Based on the created network, particular
metrics can be produced, allowing for more precise conclusions regarding the
architecture of the lung region under study.

From the DICOM format, three complex networks were created for each
region of interest, one for each pathologically relevant Hounsfield unit (HU)
interval: E for emphysema and cysts, GGO for ground glass opacity, and C for
consolidation and reticulations. The device-specific scale for the HU
transformation was derived from this implementation (62,65,255).

7.6.5. SELECTING RELEVANT METRICS

To evaluate the efficacy of the suggested CN method, the
measurements must reflect the underlying biological processes and their
dynamic evolution. A CN can be defined by various metrics, ranging from
those that quantify its interconnections to those that assess information flow
or clustering (265).

Since the objective of this paper can be translated biologically into a
method for measuring lesions and their growth, the accompanying CN
measurements should reflect their interconnectedness and size. His chosen
metrics are maximum degree number (the most significant number of
network connections for a single node), total degree count (the number of
network connections), and average degree count (the average number of
connections per node—how sparse the network is). Depending on how the
method is implemented, a network node can represent either a single pixel
or a small region; for the purposes of this section, it represents a pixel.

Figure 35 illustrates these precise measures with examples. A
micronodule (Figure 35a) is graphically represented (Figure 35d) as a node
or cluster of nodes (e.g., Figure 35d, node number 13, purple) with the
highest degree in the examined window. The total number of edges
(interconnections) in a sarcoidosis or honeycomb network (Figures 35b and
35c) may be comparable, but their average degree metrics differ dramatically.
One (S—Figure 35b) has many nodes with a median of roughly two
connections (representing the typical micronodules perilymphatic distribution
of linearly attached nodules, like a string). In contrast, the other (Figure 35c)
has fewer nodes but with many connections, averaging at 5.8. (reflecting the
cyst wall, which is linearly homogenous). Loosely translated, the total count
indicates how "damaged" the sample is per total, the average count indicates
how localized these lesions are, and the highest degree indicates the peak
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severity of the pathological alteration. Therefore, it can be argued that these
values indicate interconnectivity and size, the two necessary characteristics
examined individually on each of the three HU bands.

(d) (e) (f)

Fig. 35. Simple example to illustrate CN measurements and biological counterparts
(a) CT section with a micronodule in the center (b) CT section with sarcoidosis (perilymphatic micronodules) (¢) CT
section with honeycombing cysts (d) CN depicting micronodule CT (e) CN depicting sarcoidosis CT (f) CN
depicting honeycombing CT For all CNs, node positions mimic light color entities on the CT above them, node size
is proportional to node degree and on each node a numeric label is provided. Label size is proportional to node
size. Maximum, minimum, and scaling for node size are constant in all three CNs. Node color reflects clusterization,
provided for visual interest only. Edge width depiction is constant. CT slice scale between a, b, and ¢ is not the
same as this, which is intended for CN exempilification only.

In order to evaluate the efficacy of the suggested CN method, the
measurements must reflect the underlying biological processes and their
dynamic evolution. A CN can be defined by a variety of metrics, including those
that quantify its interconnections, information flow, and clustering (265). Since
the underlying objective of this paper may be biologically translated into a
method to evaluate lesions and their expansion, the accompanying CN
measurements should represent interconnectedness and size. Therefore, the
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chosen metrics are maximum degree number (the maximum number of network
connections for a single node), total degree count (the total number of network
connections), and average degree count (the average number of connections
per node—how sparse the network is). A network node can represent a single
pixel or a small region, depending on how the method is implemented. For the
purposes of this section, it represents a pixel.

Figure 35 illustrates concrete examples of various dimensions. A
micronodule (Figure 35a) can be visually interpreted (Figure 35d) as a node or
cluster of nodes (e.g., Figure 35d, node number 13, purple) with the highest
degree in the analyzed window.

A sarcoidosis or honeycombing network (Figures 35b and 35c) may have
a comparable total number of edges (interconnections), but their average degree
metrics are drastically dissimilar. One (S—Figure 35b) has many nodes with a
median of around two connections (representing the usual micronodules
perilymphatic distribution of linearly attached nodules, like a string), whereas the
other (honeycombing, Figure 35c) has fewer nodes but more connections,
averaging 5.8. (reflecting the cyst wall, which is linearly homogenous). Loosely
translated, the total count indicates how "damaged" the sample is as a whole,
the average count indicates how widespread these lesions are, and the
maximum degree depicts the highest intensity of the pathological alteration.

Consequently, it can be inferred that these measures reflect
interconnectivity and size, the two parameters that needed to be assessed and
evaluated individually across all three HU bands.

(s—S0)
SoXt

Jforsg! =0

S .
;,m rest

The s value from equation (1) is the studied metric, while sO is the
normalization point corresponding to the reference sample.

In Equation (1), t is stated in years because patients with ILD require
annual examinations (317). Counting the number of days (for example, using
the Excel function DAY ()) between the oldest HRCT (at time t0) and the one
now evaluated (at time t1) and normalizing it using a 365-day year is an easy
technique to calculate its value.

T = DAY (DATE (t:) — DATE(t))/365.

Another viable alternative is to normalize the year to 360 days, as is
typical in certain financial calculations; nonetheless, the most critical factor is the
consistency of the normalization type. This article applied the normalization
suggested by Formula (2).
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7.7. RESULTS
7.7.1. CASE REPORTS

This section illustrates sample locations from two completely different
patients throughout the analysis process in order to clarify the approach.

Figure 36 depicts the results of a patient diagnosed with a typical UIP
following a heated dispute among the doctors at our center for cystic fibrosis. This
patient's atypical honeycombing pattern may bias the diagnosis towards likely UIP.
Age and gender strongly influenced the ultimate diagnosis. This scenario is suitable
for evaluating the algorithm's detecting capabilities. The course of this case with
UIP+ emphysema (CPFE phenotype) is illustrated below.

- — || — _
VtotE Vaverage E Vtotal GGO Vaverage @ Vtotal C V average CDIco relative FCV relative
-1 GGO

M Follow-upyear 1 M Follow-up year 2

(d)
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Fig. 36 Case report for a lung axial HRCT, UIP + E pattern (CPFE) patient progression
(a) Superior lung region HRCT slice in initial to year, (b) Superior lung region HRCT slice in next year-ts.
(¢) Superior lung region HRCT slice in second year-to. (d) Relative speed variations on the superior lung
slice for all three bands. Speed is computed using Equation 1. (e) Basal lung region HRCT slice in initial to
year. (f) Basal lung region HRCT slice next year-t1. (g) Basal lung region HRCT slice in second year-tz. (h)
Relative speed variations on the basal lung slice for all three bands. Speed is computed using Equation 1.
The results in Figure 36 present a typical NSIP pattern in evolution.
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Fig. 37 Case report for a NSIP + E patient progression.

(@) Superior lung region axial HRCT slice in initial to year. (b) Superior lung region axial HRCT slice in next year-t1.
(c) Relative speed variations on the superior lung slice for all three bands. Speed is computed using Equation (1).
(d) Basal lung region axial HRCT slice in initial to year. (e) Basal lung region axial HRCT slice in next year-t1. (f)
Relative speed variations on the basal lung slice for all three bands. Speed is computed using Equation (1).

7.7.2. PROGRESSION SPEED

The entire lot was evaluated compared to what was discussed in the
previous section. Table 9 displays the t-test analysis of the defined relative
speed versus DLco relative variation for every HU band and CN. This test was
performed on the complete lot, including normal and ILD patients. It should be
highlighted that even though the maximum degree can be studied because the
sought-after assessment is progression, the peak singular lesion is less

meaningful.

VGav V Ccount VCav

B Follow-up year 1

)

VDLCO VECV

Table 9. t-test results for relative speed in HU bands parameters VS DLco.

HU Layer Total Count VS DLCO Average Count VS DLco Parameters
1.81144865 2.297734923 t Stat
E 0.038529988 0.013194925 P(T < 1) one-tail
2.016692199 2.015367574 t Critical two-tail
-1.334981884 -1.82528253 t Stat
GGO 0.092702764 0.035714932 P(T <) one-tail
1.987934206 1.987934206 t Critical two-tail
-1.334981884 -1.82528253 t Stat
c 0.093421672 0.035996812 P(T <) one-tail
1.999623585 1.992543495 t Critical two-tail




95

The null hypothesis is maintained for all selected series except one. The
average count VS DLco test for the E band rejects the null hypothesis, as
indicated by the italic font in Table 9.

7.7.3. TESTING FOR EARLY DETECTION

To seek for early identification, the lot was divided into normal instances
and cases with incipient ILD and relatively good functional characteristics (0-3
GAP-ILD points, DLco values of 70-85%). The DLco values were selected as
an interval centered on the lower standard limit (80%) to permit the inclusion of
early impairment in the alveolar-capillary membrane.

The cases were evaluated using the same three axes, with the results
presented in Figure 38 as box plots and summarized in Table 10.
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Fig. 38 CNs on Borderline normal versus normal layer distribution;
Layer E values with (a) maximum degree (b) total count (c) average count; Layer GGO values with (d) maximum
degree (e) total count (f) average count; Layer C with (g) maximum degree (h) total count (i) average count.

The ttest data presented in Table 10 is written in italics for the series
rejecting the null hypothesis.

Table 10. Statistical t-tests results between borderline and normal lungs.

Layer Max Degree Total Count Average Count Parameters
-0.357327012 -0.33960631 -1.194455411 t Stat
E 0.361362738 0.367964892 0.119667428 P(T < t) one-tail
2.02107539 2.02107539 2.02107539 t Critical two-tail
2.362901118 2.496174465 2.132901092 t Stat
GGO 0.016568972 0.012345754 0.023097162 P(T < t) one-tail
2.144786688 2.131449546 2.093024054 t Critical two-tail
2.787128882 2.910253494 1.723111496 t Stat
C 0.006593367 0.005384188 0.048371727 P(T < t) one-tail
2.119905299 2.131449546 2.055529439 t Critical two-tail

7.8. DISCUSSION

Figure 36 depicts two levels of axial HRCT slices (superior and basal lung
region) chosen to illustrate the evolution of disputed UIP pattern+ emphysema
(CPFE phenotype). Even though all of the results in this work belong to the axial
lung plane, their applicability is not limited. A technical examination illustrating the
equivalence in sagittal, coronal, and axial plane results would overstate the goal of
this paper, which is to highlight the uses of the CN model in imagistic contexts.
Returning to the UIP + emphysema case, an imagistic interpretation of the
progression begins with the initial to the point, which in the superior lung region
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indicates the presence of fine reticulation, bullous emphysema, and slight
subpleural honeycombing cysts, and in the basal lung, region is characterized by
sparse reticulation and honeycombing lesions.

According to the HU ranges, as previously noted, reticulations and
consolidations have comparable values. Still, in this context, the values are read
as reticulations. In specified regions, the CN model provides data for relative
speed variation on each layer. This speed is unique to a particular location and
represents a relative change in characteristics over time. It is not an absolute
value; its significance is tied to the rate of change, therefore identifying places
that are fast deteriorating. Since the CN conversion algorithm considers lesions
as tiny as 3 mm (320), the default speed is more granular than the human eye.

The CN model's relative speed on the E layer shows an increase in
follow-up in years 1 and 2. However, the magnitude varies significantly between
the superior (Figure 36d) and basal (Figure 36h) slices. The superior region is
almost 10 times more rapidly degrading than the basal slice, as measured by
the superior lobe's emphysema lesion expansion and honeycombing cyst layer
growth (Figure 36a—c), as compared with the basal lobe, in which emphysema
is not as prominently exhibited (Figure 36e—g). C layer grows in both the superior
and inferior slices, demonstrating the degenerative course of the lesion with lung
architectural deformation, reticulation, and multilayer cysts of varying sizes. The
model reveals modest fluctuations in the GGO, particularly in the basal plane
(Figure 36e—h), indicating the presence of an acute substrate in that particular
region. This image is heavily annotated (it is part of the national ILD database,
has already been reviewed by at least three lung specialists, and five other lung
specialists have assessed all of the images utilized in this study), but the GGO
difference is imperceptible. Upon examination of the patients' data, the
symptoms of the first year of follow-up are curiously somewhat worse than those
of the second. This verifies the CN relative speed light variation and its early
detection capability. In both follow-up years, the relative variation of functional
parameters is nearly zero, indicating a fixed functional status and precluding the
early identification of the proposed CN model.

Figure 37 depicts imagistic axial HRCT lung lesion progression in an
instance of NSIP pattern. On the E band, relative speed indicates a significant
rise in the number of emphysema focal points (total count) but only a moderate
increase in their intensity (average) for both sample sites, which the
accumulation of honeycombing cysts layers can explain. GGO in t0 (Figure
37a,d) exhibits a modest rise in the follow-up sample, correlating with the
interpretation of the imaging slice HRCT (Figure 37c,f). The C layer only slightly
increases in the superior regions (Figure 37a,b), as indicated by the well-defined
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multilayer cysts and their defining borders. Functional parameters have
essentially no fluctuation, supporting the early identification of the suggested CN
model based on functional parameter data.

Table 9's results support the testing of hypothesis 1, which asserts that
the CN algorithm accurately and quantitatively characterizes the progression of
ILD. Hypothesis 1 is sustained because most statistical comparisons between
DLco and CN measurements reveal essential similarities. The lone exception is
the comparison of average count and DLco in the E band (marked with italics in
the table). Some persons categorized as normal have compensatory chronic
obstructive lung pathology and/or are active or former smokers. Since CN
measurements represent biological terms, this indicates that the number of E-
layer regions of interest is the same, but the median intensity of these regions is
statistically significant and greater than the variance of their corresponding
functional parameter.

The statistical comparisons between the borderline and normal groups,
depicted in Figure 38 and Table 10, require further investigation. There is no
statistical difference on the E layer between the early diagnostic and normal sets;
hence, the CN model prohibits early detection on this layer. The data
demonstrate that, from a biological standpoint, early ILD diagnosis with
emphysema phenotype is nearly equivalent to emphysema lesions in smokers.
On the GGO layer, there is a statistically significant difference, the null
hypothesis is rejected, and the proposed model successfully detects ILD early.
Maximum degree and total count detect early ILD on the C band, while average
count does not. Pathologically, the suggested model accurately identifies well-
defined consolidation lesions but cannot identify early diffuse consolidations with
blurred edges. As a result, hypothesis 2, stating that the CN method permits
early detection, is correct for the GGO, largely valid for the C layer, and untrue
for the E layer.

Various types of ILDs that present PPF, such as idiopathic interstitial
pneumonia, autoimmune ILDs, exposure-related, ILDs with cysts and/or
airspace filling, or sarcoidosis, should apply an antifibrotic therapy according to
the current guidelines (26). In order to maximize therapeutic benefits in terms of
the patient's life quality and duration, it is necessary to discover the progressive
feature as soon as feasible. This leaves practitioners in a difficult position, as
they must rely on their practical "medical sense" or CAD-based approaches to
evaluate the likelihood of initiating treatment.

Previous CAD approaches, such as those that implement simple
mathematical-based techniques in one or more dimensions (66—69) or more
complex machine and deep learning algorithms (8-10,69-71) or even the
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commercially available CALIPER do not provide a method to objectively assess
the aggressive aspect of a lung disease that can serve as an indicator for the
initiation of an antifibrotic protocol.

The investigated method can do this, which utilizes a speed
measurement influenced by physics. The proposed speed assessment does not
indicate the severity of the disease but rather its aggressiveness. For instance,
a simple insert disease name here> in its early stages might advance swiftly,
resulting in a high observed velocity. Although the superior region in Figure 36
has a less severe appearance, it deteriorates faster, as measured by the speed
test. However, a severe aspect can remain relatively static, indicating another
component to be considered (the medication is working, the phenotype is slowly
progressive, the disease is remissive, or it has shifted towards other areas).
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CONCLUSION AND PERSONAL CONTRIBUTION

CONCLUSIONS STUDY 1

In this article, we cover the recent developments in deep learning
algorithms and their applications in medicine, primarily in the field of ILD
diagnosis.

We concentrated on the problems and the methods to repair them so
that the early detection of ILDs could become a common practice with clinical
implications. The next step in the early diagnosis of IPF is the development of a
CAD that can be implemented on any computer and is accessible to non-
academic centers.

CONCLUSIONS STUDY 2

This study presents a novel approach to transforming HRCT images of
the lung by using complicated network structures. In the section on technique, a
greater level of profundity is devoted to the phases of the algorithm and the
reason for each selected parameter. The secondary pulmonary lobule's
anatomical boundaries support the sample size, making it acceptable; the radius
that influences network connection is connected with injury granularity, and the
Hounsfield unit intervals depend upon the device and resolution. In the section
on the results, the processing processes for two sample patients (one normal
and one with a pathological condition) are presented in parallel, in addition to a
whole-lot perspective. In the section titled "Discussion," the correctness of this
model is explained from a System Science point of view by employing the degree
distributions as the primary instrument for system description. This is performed
to demonstrate the model's accuracy. In addition, the network measurement
clusterization has been defined, and it has been shown that, as a consequence,
substantial disparities have been produced between the normal and diseased
lots.

From the point of view of Medical Science, it is demonstrated how the
selected model matches clinical data and how the low granularity of the model
provides an advantage when it comes to the diagnostic procedure. A
comparison between this method and others that already exist reveals its
benefit, namely the ability to provide a detailed qualitative and quantitative
measurement. Inadequacies of the model that have been proposed, such as its
incapacity to function independently as of yet and the relatively small lot on which
it has been tested, will need to be addressed in a subsequent study.
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In conclusion, it can be said that the stated purpose has been
accomplished because it demonstrated how a complex network model might be
utilized to transform lung HRCT into a quantifiable and qualifiable structure that
can improve ILD diagnosis.

CONCLUSION STUDY 3

To effectively treat ILDs, two concerns must be resolved, which are well
known to all practitioners: early recognition and accurate progression evaluation.
Traditional medical and computer-based approaches based on artificial
intelligence, machine learning, etc., have failed thus far despite the crucial need
for effective treatments for diseases such as IPF. This work aimed to determine
if a CN-based computer-assisted diagnosis can offer the necessary data to
effectively manage ILDs.

Two hypotheses were looked at in order to achieve this: the first studied
progression, while the second examined early detection. In terms of
development, the CN CAD was nearly a complete success. Its precision in
testing lesions as tiny as 3 mm enabled correlation with the clinical status beyond
the granularity of conventional functional tests. The only issue with the average
count measurement type was on the E band, but the other five measurement
axes readily compensate for this.

For early detection, the GGO layer of inflammation proved crucial.
Inflammation and fibrosis are the two most common ILD states, and the CN
algorithm performed well on both GGO-defined HU bands and C-defined HU
bands. This demonstrates the practical capabilities of this algorithm type, which
is particularly well-suited to ILDs and has not been met by any other tool, such
as Caliper.

As a disadvantage, the CN technique has a lengthy runtime that grows
exponentially with the size of the investigated window. It also requires prior
segmentation of the lungs, which can be obtained manually or using other CAD
systems.

The authors believe this technique should be incorporated into a much
bigger CAD system, combining the faster machine learning segmentation and
pattern identification capabilities with the slower but more accurate CN local
analysis.
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PERSONAL CONTRIBUTION

The scientific research objectives have been achieved because the

aim to provide a viable CAD algorithm for ILD patient imaging alternative
diagnosis was obtained;

Regarding personal contribution, they were achieved step-by-step as

follows:

In this research paper, | proposed and identified a new direction for
lung imaging thin section CT processing based on a complex network
mechanism.

| begin this interdisciplinary research paper by offering an in-depth
analysis of how virtual Al improves ILD diagnosis, studying all the
existing CAD case approaches and then identifying the burns.
Identified an opportunity to integrate a new method that has not been
done so far. | guided the selection of such algorithms for the specific
field of ILD management, emphasizing the visual-based complex
network method.

Participating in creating a CN algorithm to model a lung HRCT
accurately

| have taken care that the specific reality of HRCT is reflected in the
CN-based analytical algorithm, namely:

o segmentation on specific pathological house field unit bands, with
impact in HRCT imaging analysis for interstitial lung pathology.
Thus, GGO, consolidation (considered equal to reticulation), and
emphysema (equal to cyst) bands were converted with the help of
the algorithm into complex networks, reported, and correlated with
the values of HU corresponding to each tissue.

o -correlation of the form of pathological variation identified following
the CN algorithm process with the medical imaging analysis of the
CTs provided as a database validated by experts in the field.

Participating in creating the optimum window size to analyze the lung
with the previously mentioned algorithm. Translating anatomically
lung-specific measurements into the algorithm allows a secondary
pulmonary lobule to be analyzed. Considering the idea of capturing at
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least one entire secondary lobule, we chose the smallest valid DICOM
sample, a rectangle area of 65X65 pixels.

| validated the provided algorithm method from a biological system
perspective. This was possible based on analyzing the HRCTs of both
normal and affected lungs by all three measurements considered for
this proposed network (total count, average degree, and maximum
degree) and proving a solid separation between the normal and
pathological network.

The next step was analyzing ILD patients dynamically (successive
scans) by clustering them by HRCT patterns (UIP, NSIP, HP, OP, and
sarcoidosis) using the algorithm output. Two cases of ILD (UIP plus
emphysema phenotype and NSIP) reports highlighted early detection
and accurate progression evaluation.

Participating in defining a new measurement type for pulmonary
fibrosis progression customarily flowed. Because progression is
explained as a variation over time, the relative variation speed
measurement emerged to translate the engineering notion.

In the end, validating the previous measurement on an ILD cohort
dynamic was analyzed by correlating mathematical values with
medical reality.

Although this Ph.D. paper includes a rigorous and complicated

research process, there are still issues to be solved, such as:

The need for an automated system of lung pre-segmentation by CAD
techniques, not manuals - as we used;

Integration of a classifier Al technique for marking the region of
interest to be studied;

Graphical interface intuitive and friendly to the non-technical user;
Processing (cloud) that would allow increased speed and access from
mobile devices.

The technical advantage of the proposed algorithm is the identification

of minor HRCT lesions, which leaked the classical technique of humans
validation, and which predicts the evolution towards a disease (detection of
fine lesions on an HRCT imaging considered normal by human validation,
later the patient being diagnosed with covid 19). In any case, future research
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is needed. The burden to be considered is that the algorithm is now in a proof
of concept (POC) version, which requires advanced technical personnel.
Also, expensive and high-performance equipment is needed for numerical
processing.

Therefore, as closing lines, a future perspective is to link this technical
domain, IT, and medicine as strongly as possible. Together, they can lead to
great results, especially in the case of this vast and ambiguous entity, which
is ILD.
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